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Preface
Matteo Pascucci∗ and Adam Tamas Tuboly†

We are very glad for the opportunity of dedicating the present issue of
Organon F to modal logic, a subject that can be said to lie at the intersec-
tion of philosophy, mathematics and computer science. Nowadays there are
innumerable applications of modal logic in various specific fields and it would
be highly challenging to provide a detailed and all-encompassing report. The
present issue is rather intended to represent a pause of reflection: it provides
fundamental information on the history of modal logic from the early works
of C.I. Lewis and draws attention to some current directions of research. This
is the reason why we chose “Reflecting on the legacy of C.I. Lewis: Contem-
porary and Historical Perspectives on Modal Logic” as a title. We hope that
the contents will be useful not only for readers already acquainted with the
subject, but also for the broad philosophical audience interested in the formal
analysis of concepts.

As the second half of the twentieth and the first two decades of the twenty-
first century testify, modal logic is not simply a mathematical tool to structure
our argumentations in a rigorous fashion. It is actually a way to philosophize, a
multi-use framework to represent philosophical problems, and an overwhelm-
ing vocabulary to capture our basic intuitions about knowledge, meaning,
reference, ethics, and, obviously, modal matters. With such a strong and de-
terminate field comes a long and far-reaching history. The history of modal
logic is indeed a subtle and complex story. Many logicians and philosophers
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were in the foreground for many years; they initiated long-lasting debates, in-
troduced novel concepts, axioms, and techniques, or just pursued alternative
philosophical lines that are still there to be examined.

Just to take one example, consider G. Bergmann. His polemical “The
Philosophical Significance of Modal Logic” (1960) is quite similar to W.V.O.
Quine’s project to critically examine the modal notions against the back-
ground of our technical and philosophical commitments. Though Bergmann’s
paper is still cited sometimes, he is quite unknown in the story, even despite
the fact that both of Bergmann and Quine forged their mature views at the
same time and took similar examples; J. Hintikka (1963/1969) even claimed
that Bergmann and Quine insisted on very similar questions. Bergmann pub-
lished technical papers (1949; 1956) as well as philosophical inquiries about
the modalities (1948a; 1948b; 1948c), but no members of his ‘Iowa-school’
took his line of thinking any further in these matters.

The history of modal logic is usually focused on its modern initiator,
namely on C.I. Lewis and on his dissatisfaction with B. Russell and A.N.
Whitehead’s Principia Mathematica. Lewis thought that the way Russell and
Whitehead handled the notion of ‘implication’ in their book was highly mis-
leading. In Principia Mathematica implication is expressed through a truth-
functional conditional (called ‘material implication’) which we can represent
as ⊃ and is such that p ⊃ q turns out to be always true except when p is
true and q is false. Thus, according to such a representation of implication,
a true proposition is implied by any (true or false) proposition and a false
proposition implies any (true or false) proposition. Lewis decided to look for
alternative ways of capturing the intuitive meaning of ‘implication’ in order to
avoid similar paradoxes. Though he started working on these ideas right after
the publication of Russell and Whitehead’s magnum opus, his results were
published in his own philosophical-logical epos, A Survey of Symbolic Logic
(1918), and later elaborated in more details with C.H. Langford in Symbolic
Logic (1932).

After the introduction of a new operator for ‘strict implication’ (J), which
conveys a necessary connection between the antecedent and the consequent,
Lewis faced various philosophical and technical obstacles. (Note that from
Lewis’ first book on the issue only a few pages, not more than fifty out of
four hundred, concerned the problem of the modalities.) Lewis provided much
material for logicians and philosophers, and his reception was quite dynamical;
sometimes philosophers got the louder voice over logicians, sometimes it was
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Preface 320

the other way around. Lewis’ influence can be measured in various ways, but it
might be enough to point out that even in the 1950s, years after R. Carnap’s
major work on the modalities, most of the logic journals (like The Journal
of Symbolic Logic, the Notre Dame Journal of Formal Logic, the Bulletin of
the American Mathematical Society or Studia Logica) were filled with articles
that either criticized or tried to improve Lewis’ work. Things began to change
only after Kripke’s influential paper (1959) paving the road for a semantic
perspective on modal logic, though it took again a few more years till Lewis
entirely left the canon. But he is back now, both as a philosopher (Olan and
Sachs 2017) and as a logician.

Lewis was not the first logician who considered a formal approach to modal
logic (H. MacColl and even B. Russell spent some of their time on this issue),
but it was certainly Lewis who put modal logic back on the table for genera-
tions and who developed such systems for the modal notions that kept busy
hundreds of philosophers, logicians and mathematicians in the forthcoming
century. We believe that his historical background, philosophical influence,
and logical complexity have earned the respect and attention they deserve.
Even after one hundred years from the publication of A Survey of Symbolic
Logic, there are still issues, concepts and problems that Lewis could offer us
—historically, logically, and philosophically as well.

As far as the structure of the present issue is concerned, the reader will find
eight research articles, that can be arranged in two groups. The first group
consists of the following contributions: “Modal Logic before Kripke” by Max
Cresswell, “Semantics without Toil? Brady and Rush meet Halldén” by Lloyd
Humberstone, “C.I. Lewis, E.J. Nelson, and the Modern Origins of Connexive
Logic” by Edwin Mares and Francesco Paoli, and “Alternative Axiomatiza-
tions of the Conditional System VC” by Claudio Pizzi. These articles were
submitted upon invitation and were reviewed by the guest-editors together
with external experts. The article by Cresswell provides a concise overview of
the main results obtained in modal logic before S. Kripke’s work on relational
semantics; among other things, it points out some aspects of the early develop-
ment of modal logic that are quite often overlooked in historical introductions
to the topic, such as the completeness results due to A. Bayart. The article
by Humberstone shows that Halldén incompleteness represents a fundamental
obstacle for any attempt to obtain systematic (and trivial) characterization
results in modal logic via a homophonic semantics where the metalanguage
includes a copy of the logical vocabulary of the object language simulating
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its behaviour. The article by Mares and Paoli illustrates E.J. Nelson’s early
work on connexive logic, which was motivated by the desires of avoiding some
paradoxes of strict implication and of developing a more fine-grained analysis
of the notion of entailment; furthermore, it discusses C.I. Lewis’ reaction to
such an approach. Finally, the article by Pizzi provides some new axiomatic
bases for a system of conditional logic originally proposed by D. Lewis as
his favourite choice for the analysis of counterfactuals; furthermore, it points
out some problems related to the trivialization of modalities in the logical
framework at issue.

The second group consists of the following contributions: “On a Supposed
Puzzle concerning Modality and Existence” By Thomas Atkinson, Daniel Hill
and Stephen McLeod, “Wiredu contra Lewis on the Right Modal Logic” by
David Martens, “On ‘actually’ vs ‘dthat’: Truth-conditional Differences in
Possible Worlds Semantics” by Genoveva Martí and José Martínez-Fernández,
and “Semantic Tableau Versions of Some Normal Modal Systems with Propo-
sitional Quantifiers” by Daniel Rönnedal. These articles were selected out of
all submissions received via a double-blind reviewing procedure. The article by
Atkinson, Hill and McLeod provides a novel solution to a philosophical puzzle
concerning the notions of necessity, possibility and existence originally formu-
lated by K. Fine. The article by Martens critically reconstructs K. Wiredu’s
thesis that the ‘right’ system for the formal analysis of modal notions should
be at least as strong as S4. The article by Martí and Martínez-Fernández
shows how possible worlds semantics can be used to rigorously capture some
difference in meaning between the operators ‘actually’ and ‘dthat’. Finally, the
article by Rönnedal proposes a modular approach to build labelled tableaux
for a family of normal modal systems based on a language with propositional
quantification.

We would like to express our gratitude to Marián Zouhar and Martin
Vacek for giving us the possibility of working on this special issue; moreover,
we would like to acknowledge all reviewers and external experts for their sub-
stantial contribution in improving the overall quality of the accepted articles.1

1During the editorial process of the present issue, Matteo Pascucci was supported by the National Scholar-
ship Programme for postdoctoral research in Slovakia and by an Action Austria-Slovakia Scholarship; Adam
Tamas Tuboly was supported by the MTA BTK Lendület Morals and Science Research Group and by the
MTA Premium Postdoctoral Research Scholarship.
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Abstract: 100 years ago C.I. Lewis published A Survey of Symbolic
Logic, which included an axiom system for a notion of implication
which was ‘stricter’ than that found in Whitehead and Russell’s
Principia Mathematica. As far as I can tell little notice was taken
of this until 1930 when Oskar Becker provided some additional ax-
ioms which led Lewis in Symbolic Logic (written with C.H. Lang-
ford, 1932) to revise the system he had produced in 1918, and list
five systems which could be obtained using Becker’s suggested for-
mulae. The present paper reviews the development of modal logic
both before and after 1932, up to 1959 looking at, among other
work, Becker’s 1930 article and Robert Feys’s articles in 1937 and
1950. I will then make some comments on the completeness results
for S5 found in Bayart and Kripke in 1959; and I will finally look
at how modal logic reached New Zealand in the early 1950s in the
work of Arthur Prior.

Keywords: Modal logic; history of modal logic; C. I. Lewis; strict
implication; Saul Kripke

1 Introduction
In recent times modal logic has been seen as the logic of relational frames, a
development which took place in the early 1960s. In order to reinforce the
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324 Max Cresswell

importance of this change it is timely to reflect on what modal logic was like
up to that time. Such reflections are especially appropriate in that 2018 marks
the centenary of the publication of C.I. Lewis’s Survey of Symbolic Logic which
represents the first presentation of a formal axiomatic system of modal logic.

2 Principia Mathematica (PM) 1910

Although modal logic was studied since the time of Aristotle, and was re-
vived in the late 19th century by Hugh McColl, the modern development of
the subject really begins with C.I. Lewis’s dissatisfaction with some of the
‘paradoxical’ sentences found in Whitehead and Russell 1910. These include:

(1) p ⊃ (q ⊃ p)

(2) ∼ p ⊃ (p ⊃ q)

(3) (p ⊃ q) ∨ (q ⊃ p)

(1) and (2) can be read as claiming that if p is true then it is implied by every
proposition, and if it is false it implies every proposition. (3) claims that of
any two propositions one implies the other. Beginning in 1912 C.I. Lewis
objected that these theorems conflict with the interpretation of ⊃ as ‘implies’.

3 C.I. Lewis Mind 1912, 1914, Journal of
Philosophy, 1913, 1914

Lewis makes a distinction between an implication which holds materially and
one which holds necessarily or strictly. The first article in Mind (Lewis 1912),
after exhibiting (1)-(3) as what Lewis regards as defects in a theory of im-
plication, concentrates on pointing out that you can understand implication
as ∼ p ∨ q provided that you understand the disjunction intensionally i.e. as
holding necessarily. (Lewis 1912, 523) On p. 526 he calls the implication used
in the “Algebra of logic”1 material’ and contrasts it with his own ‘inferential’

1In footnote 1 on p. 522 he instances PM as ‘the most economical development of the calculus of proposi-
tions’ in particular with its definition of p ⊃ q as ∼ p ∨ q.
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Modal Logic before Kripke 325

or “strict” implication.’ In the second of the articles in Mind (Lewis 1914a)
he introduces two symbols for intensional (∨) and extensional (+) disjunction
respectively, though he only uses one symbol for implication (⊃), insisting on
its ambiguity. Although in the 1912 paper he speaks of an intensional dis-
junction as one which is necessarily true, he does not adopt any symbol for
necessity. (If ∨ is intensional you can of course define the necessity of p as
p∨p, but Lewis does not do so.) In neither of these articles does Lewis attempt
anything like an axiomatisation of the logic of strict implication, though on p.
243 of (Lewis 1914a) he does provide a list of formulae which are valid, using
⊃ for material implication and + for material disjunction; and contrasting
these formulae with some corresponding formulae in a language in which ⊃ is
strict implication and both ∨ and + appear. The two articles from the Journal
of Philosophy (Lewis 1913, 1914b) have a slightly different focus. The 1913
article lists a large number (35) of valid formulae in PM which Lewis regards
as questionable when ⊃ is interpreted as implication. As in his other articles
Lewis uses ⊃ for strict implication and ∨ for strict disjunction. As in (Lewis
1914a), in (Lewis 1914b) he uses + for material disjunction, but in this article
he introduces < for material implication. He also uses ∼ for impossibility and
− for negation. On p. 591 of (Lewis 1914b) he does produce an axiom set,
though two of the axioms are defective when ⊃ is understood intensionally.
One is (p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r)), which, when added to the other
axioms, reduces each strict operator to its material counterpart.2 It’s clear
that what Lewis is trying to do is retain as much of PM as he can without
running into what he thinks of as its paradoxical consequences. He clearly
thinks that material implication does not reflect what he supposes ordinary
logicians (uncorrupted by truth-functional logic) think of as the relation of
implication.

4 Lewis 1918

(Lewis 1918) is the first axiomatic presentation of modern modal logic.3 What
2Problems like this are discussed in (Parry 1968). Parry notes on p. 126 that in the 1912 paper Lewis

accepts the equivalence of (p ∨ (q ∨ r)) and (q ∨ (p ∨ r)) even when ∨ is a strict disjunction, and comments in
footnote 39: “These mistakes, long since corrected, show the fallibility of logical intuition.” Parry’s chapter
provides a thorough survey of Lewis’s modal logic, and for that reason the present paper concentrates on the
work of others at that time, in particular works which are not available, or not easily accessible in English.

3For an elaboration of this claim see (Parry 1968).
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326 Max Cresswell

Lewis says is “Various studies toward this system have appeared in Mind and
the Journal of Philosophy. ... But the complete system has not previously
been printed.” (Lewis 1918, 291, fn. 1).

The chapter on strict implication (J) is only a small part of the book. In
that chapter Lewis does not do any metalogic, and even definitions seem to
be regarded as object-language formulae.4

(Lewis 1918) takes impossibility (∼) as primitive, and defines p J q to
mean that it is impossible that p should be true without q’s being true too.
In 1918 − is still used for ‘not’ and ∼ for impossibility, so − ∼ p means that p
is possible and ∼ −p means that p is necessary. Lewis uses juxtaposition for
conjunction, but I have used the now common ∧ and therefore write Lewis’s
definition as p J q =def ∼(p ∧ −q).5 What you then find is a collection of
axioms (Lewis 1918, 291ff.) of which the first five are no more than strict but
conjunctive versions of axioms of PM. Specifically Lewis’s axioms are:6

1.1 (p ∧ q) J (q ∧ p)

1.2 (q ∧ p) J p

1.3 p J (p ∧ p)

1.4 (p ∧ (q ∧ r)) J (q ∧ (p ∧ r))

1.5 p J − − p7

1.6 ((p J q) ∧ (q J r)) J (p J r)

1.7 ∼ p J −p

4A criticism of these early papers is found in (Wiener 1916). Although Wiener does not put the point
in exactly this way his defence of Russell against Lewis could easily be seen as pointing out that when we
are giving an account in the metalanguage of implication we are claiming that for any formulae α and β, α
implies β when α ⊃ β is valid, which is to say that it is true no matter what formulae α and β are. Or, if
you prefer, either α is false or β is true, no matter what values are given to its propositional variables. Lewis
seems unaware of this way of describing the situation. Here and elsewhere in the paper I use α, β etc. as
metalogical variables for well-formed formulae (wff) of the relevant object language. The need for making
such a distinction seems not to have been recognised by these earlier writers.

5In doing so it must be remembered that on p. 293 of (Lewis 1918), in 1.04, Lewis uses the symbol ∧, not
for conjunction, but for strict disjunction. In 1.05, he uses + for material disjunction.

6In addition to using ∧ for conjunction in place of Lewis’s juxtaposition, I have inserted parentheses.
7This axiom is repeated in the list on p. 493 of (Lewis and Langford 1932), but was proved to be redundant

in (McKinsey 1934). Lewis notes McKinsey’s result in the 1959 Appendix (Appendix III) to (Lewis and
Langford 1932) on p. 503.
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1.8 (p J q) = (∼ q J ∼p)

It’s not difficult to see how these axioms arose. The idea is that PM’s theorems
also hold when the main operator is strict, in the sense that, for instance, when
⊃ is replaced by J the result will still be valid.8 1.6 states the transitivity of
J. 1.7 says that impossibility implies falsity. 1.8 is in many ways the most
interesting. In the first place it was shewn by E.L. Post to lead to ∼ p = −p,
and was replaced, in Lewis 1920, by9

1.8∗ (p J q) J (∼ q J ∼p)

But even 1.8∗ was one which later caused Lewis some trouble. It’s not difficult
to see why. In the antecedent both variables are in the scope of a J which is
itself only in the scope of the main operator, while in the consequent both the
variables are in the scope of ∼ (which for Lewis is a modal operator) which
in turn is in the scope of a J which is itself in the scope of a modal operator.

Except for Lewis’s 1920 correction to 1.8 little notice appears to have been
taken of his work until a 1930 article by Oskar Becker.10

5 Becker 1930
Although in the Survey Lewis had taken the one-place impossibility operator
as the only modal primitive, for which he used ∼, his principal interest was
in the defined operator J. I mentioned above that the p and q in the conse-
quent of 1.8∗ are in the scope of three operators: one occurrence of ∼ and two
occurrences of J. (Just as p in ∼∼ p is in the scope of two modal operators,
which prevents its elimination by a double negation rule.). In more recent
notation, with □ (or L) for necessity,11 and ♢ (or M) for possibility, Lewis’s
∼∼ p is equivalent to □♢p, − would be ♢, ∼ − would be □, ∼ − ∼ − would

8Thus, for instance, not only is −p ⊃ (p ⊃ q) valid, so is −p J (p ⊃ q), but not of course −p J (p J q).
9The label 1.8∗ is given by (Becker 1930, 504) (but using < for strict implication). In (Lewis 1918) it is

2.2 on p. 297.
10There are a few exceptions. As well as (Wiener 1916) mentioned in footnote 4 above there is an article by

E. J. Nelson (1930) on what have come to be called the ‘paradoxes of strict implication’ – that an impossible
proposition strictly implies every proposition, and that a necessary proposition is implied by every proposition.
(See Lewis 1918, 506: 3.52 and 3.55.) Although this topic has caused philosophical controversy I am not
concerned with it in this paper.

11In the time in question modal notation was somewhat fluid, and, except when commenting specifically
on notational matters I have used Fitch’s symbol □ for necessity and Lewis’s symbol ♢ for possibility. The
first published use of □ is in (Barcan 1946).
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328 Max Cresswell

be □□, − ∼ − ∼ would be ♢♢, and so on. These sequences of operators are
what Becker called ‘modalities’, and in particular, where one modal operator
is inside the scope of another he called them ‘iterated’ or ‘complex’ modalities.
(Becker 1930, 502) comments that:

The more complicated modalities are not handled by Lewis. It is
striking that the iterations of impossibility are mentioned.12

By this he means that Lewis’s axioms do not guarantee the reduction of iter-
ated modalities. So (Becker 1930, 508) says:

We therefore add to the Lewis axioms the new axiom 1.9

1.9 − ∼ p <∼∼ p13

A few pages later he introduces two further axioms:

1.91 p <∼∼ p (p. 513)

1.92 ∼ −p <∼ − ∼ −p

In current notation 1.9 is equivalent to ♢p J □♢p, 1.91 is p J □♢p, and 1.92 is
□p J □□p. These axioms are all ones considered by (Lewis 1932). 1.91 is the
proper axiom of S5 and 1.92 of S4. 1.91 is the Brouwerian axiom. Becker’s
principles led Lewis to write the appendix to the 1932 book with Langford, in
which he set out a number of modal systems of increasing strength.

6 Lewis and Langford 1932 (L&L)
I won’t say much about (Lewis and Langford 1932) since it is well known,
and surveys of the various Lewis systems exist all over the place. In this work
Lewis takes possibility, which he writes as ♢, as the basic modal notion, and
defines p J q as ∼ ♢(p∧ ∼q). (∼ is now the regular negation, not impossibility
as in Lewis 1918.) By 1932 Lewis had been convinced that even axiom 1.8∗

was too strong, and opted for something weaker. In an appendix Lewis sets
out five systems which he calls S1–S5. The system of (Lewis 1918) is the

12This translation is by Jacques Riche.
13Becker’s symbol for strict implication is <. I am omitting superfluous parentheses.
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Modal Logic before Kripke 329

system he calls S3, and it is the presence of 1.8∗ in S3 which appears to have
worried him. The system he favoured was the one he called S2. In the 1932
book he includes a proof that S1 is weaker than S2, and he is clear that S3
is stronger than he wanted, but at the time of writing L&L he had no proof
that S3 was stronger than S2, and used S1 as a ‘fallback’ position in case
S2 should contain S3. (Parry 1934 proves that S3 is stronger than S2, and
Parry 1939 is a study of the modality patterns of S3.)

Although L&L was published in 1932 the next two articles appear to have
been written in ignorance of that work, and so do the papers they refer to.
They mostly use the notation of (Lewis 1918), and I will follow them in this
(though they sometimes use < instead of J). But I will refer to the systems
S3, S4 and S5 even though these names were only introduced in an appendix
to L&L.

7 Gödel 1933

In a one page plus three lines article, Gödel provides an axiomatisation of
the system now called S4. Although Gödel is aware of Lewis’s earlier work,
and also aware of Becker’s work, and of the work of W.T. Parry, he does not
yet seem to be familiar with L&L. From the perspective of modal logic the
main feature of Gödel’s paper is to axiomatise S4 by shortcutting the separate
postulation of strict versions of the axioms of PM, and replacing them with a
rule which says that if a formula is a theorem then so is that formula preceded
by a necessity operator which Gödel writes as B. This rule is added to an
axiomatisation of the classical (non-modal) propositional calculus, together
with the axioms:

• Bp → p

• Bp → ((B(p → q) → Bq)

• Bp → BBp

In these axioms → is the symbol for material implication (Whitehead and
Russell’s ⊃) used in (Hilbert and Ackermann 1928).

One might wonder how Gödel came to consider an axiomatisation with
such a rule. I owe the following conjecture to a discussion with Rob Goldblatt.
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Gödel’s paper is concerned to shew how to interpret intuitionistic logic with
the aid of B as a ‘provability’ operator. In intuitionistic logic, mathematical
truths —represented by formulae which can be ‘asserted’— only exist because
they have been proved. It therefore seems natural to add a rule which explicitly
states this. As far as I understand, Gödel was not a modal logician, though
his article does make the link with Lewis’s system extended by an axiom of
Becker’s which is equivalent to Gödel’s Bp → BBp. Nevertheless, although
Gödel at that stage may not have been familiar with Lewis and Langford’s
book he was familiar with (Becker 1930), since he had reviewed it in (Gödel
1931), and therefore he would have been familiar with (Lewis 1918), at least
to the extent that Becker represents Lewis.

Gödel cites (Parry 1933)14 as evidence that the system that he, Gödel,
has just presented is indeed the system of (Lewis 1918) provided that it is
extended by one of Becker’s axioms. Gödel is correct that Lewis’s system (S3)
with the addition of Np < NNp does axiomatise his (Gödel’s) system. This
axiom is Becker’s 1.92 on p. 514, which gets you S4. (Parry 1933) however
is concerned with Becker’s 1.9, which is what is one form of the proper S5
axiom. Parry’s purpose is to provide a decision procedure by conjunctive
normal form for first-degree modal formulae —formulae in which no modal
operator is within the scope of any other modal operator. Parry does not
himself prove that Becker’s 1.9 guarantees that every formula can be reduced
to first degree, though he does add a footnote acknowledging the appearance
of (Wajsberg 1933), in which the reduction of every formula to the relevant
normal form is established with the aid of 1.9. Since such a reduction is not
possible in S4, nothing in (Parry 1933) helps (Gödel 1933). So in all likelihood
it may be accidental that Gödel refers us to (Parry 1933), and probable that
the connection with modal logic is incidental to Gödel’s aim. It is perhaps
significant that the item immediately following (Parry 1933) is a paper by
Gödel, though unconnected with modal logic.15

8 Wajsberg 1933
Wajsberg concentrates on S5 rather than S4. He uses a reduction to a normal
form, and gives an interpretation in an ‘extended’ logic of classes which con-

14(Parry 1933) is Gödel’s Parry (1933a). Gödel’s Parry (1933) is my (Parry 1934).
15Much of the information in this section, and indeed the whole paper, is based on material collected by

Jacques Riche, to whom I am deeply indebted.
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tains an operator on a class A which gives the universe class U when A = U
and the empty class ∅ when A ̸= U . Wajsberg axiomatises this calculus in
a way which can be seen as a set of axioms for S5 (and he notes this). In a
sense then this can be said to constitute the first completeness proof in modal
logic. It does however provide completeness only for S5. One feature that
Wajsberg’s work does illustrate is that there is a difference between reducing
modalities, strings of □, ♢ and ∼, and modal functions, formulae with modal
operators in them. Though he does not use the name 1.9 or attribute the
axiom to Becker Wajsberg’s work shews that with Becker’s 1.9 you can not
only reduce all modalities to six, but you can reduce all modal functions to
formulae of first degree. This contrasts with S4 where, although there are only
finitely many distinct modalities, modal functions are not always reducible to
first degree.

Axiom 1.9 was first published in (Becker 1930), but from a footnote on p.
492 of L&L it seems that Wajsberg had seen its importance before Becker’s
work had appeared. Lewis in this footnote is commenting on some matrices
which can be used to distinguish the various systems he (Lewis) is putting
forward. Lewis writes:

Groups II and III, below, were transmitted to Mr. Lewis by Dr. M.
Wajsberg, of the University of Warsaw, in 1927. Dr. Wajsberg’s
letter also contained the first proof ever given that the System of
Strict Implication is not reducible to Material Implication, as well
as the outline of a system which is equivalent to that deducible
from the postulates of Strict Implication with the addition of the
postulate later suggested in Becker’s paper and cited below as
C11.16 It is to be hoped that this and other important work of Dr.
Wajsberg will be published shortly.

9 Feys 1937
In 1937 Robert Feys produced a survey of modal systems. Much of Feys’s
article is in the spirit of Lewis in looking at which laws of the non-modal
propositional calculus still hold when the symbols are interpreted ‘strictly’

16C11, in the notation of (Lewis and Langford 1932) is ♢p J ∼♢∼♢p, and is the characteristic axiom of the
system Lewis called S5. In the notation of (Lewis 1918), it is − ∼ p J ∼∼p. In Becker and in Wajsberg it is
− ∼ p < ∼∼p.

Organon F 26 (3) 2019: 323–339



332 Max Cresswell

and which do not. There is however an important difference. Feys seems to
be the first to notice that you can treat modal logic as a collection of sys-
tems, all based on classical logic, but in which the modal operators can be
given a variety of interpretations, and each system reflects some particular
interpretation. Unlike Lewis, Feys seems to feel that it is not at all an easy
matter to decide on just which logic is the ‘correct’ one, and points out that
mainstream logic concentrates on non-modal operators. Feys sees the need to
justify considering modality against those who think that ‘the logic of truth
and falsity is enough’. Here are some extracts from §1 of Feys’s paper.17

The idea of a logic of modalities is as old as logic itself.

When, two thousand years after Aristotle, logistics resumes its
work to give it mathematical rigor, the form it will adopt is that of
a logic of truth and falsity, almost such as the Stoics had conceived
it. In this restricted form it will prove susceptible of a tangible and
adequate expression by symbols of which Principia Mathematica
remains the model.

But such a methodical limitation does not eliminate the problems
of philosophy, and even of the sciences, which are stated in terms
of modalities. It is impossible to reason about causality, about the
very value of deductions, without resorting to the idea of necessity
and to those correlative to it, the idea of possible, of contingent.

Feys then sets out the nature of the axiomatic method, contrasting the situa-
tion in modal logic with that in non-modal propositional logic which he calls
‘the logic of true and false’. In the case of the logic of true and false there is
another method available that is to say we can study the logic of material
implication by the method of truth-tables, and therefore such logic may be
held not to require the axiomatic method. By contrast, in 1937 this method
seemed the only one available for modal logic.

An axiomatic presentation does not require you to attach any meaning to
the formulae. Feys first lists a set of axioms known to be sufficient for the

17I am using a translation by Jacques Riche, but have altered Feys’s own rather idiosyncratic notation to
a notation with ♢ and □ for the possibility and necessity operators.
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propositional calculus followed by three modal axioms. With ♢ for possibility
and □ for necessity these are:18

• p ⊃ ♢p (23.11)

• □p ≡ ∼♢∼p (24.1)

• (□(p ⊃ q) ∧ □p) ⊃ □q (25.3)

together with the rules:

• A logical law remains true if one substitutes for a variable p, q, r, wher-
ever it appears, the same function containing modalities. (22.3)

• If p and p ⊃ q are logical laws, q is a logical law.19 (13.42)

• From a logical law p one can conclude to a logical law □p. (What is
tautologically true is tautologically necessary).20 (25.2)

In §20 Feys shows awareness of the difference between Lewis’s way of pro-
ceeding, in which the axioms are all stated in terms of strict implication, and
Gödel’s way of proceeding:

18The axiom set (for classical logic) is attributed to Heyting. It takes as primitive symbols more than are
customary today. In the notation of the present paper the axioms adopted are:

• p ⊃ (p ∨ q)

• p ⊃ (p ∧ p)

• (p ∧ q) ⊃ (q ∧ p)

• (p ∨ q) ⊃ (q ∨ p)

• (p ∧ (p ⊃ q)) ⊃ q

• ((p ⊃ q) ∧ (q ⊃ r)) ⊃ (p ⊃ r)

• p ∨ ∼p

• ((p ⊃ q) ∧ (p ⊃ ∼q)) ⊃ ∼p

• q ⊃ (p ⊃ q)

• ∼p ⊃ (p ⊃ q)

• (p ⊃ q) ⊃ ((p ∧ r) ⊃ (q ∧ r))

• ((p ⊃ q) ∧ (r ⊃ q)) ⊃ ((p ∨ r) ⊃ q)

19Feys states this rule in terms of the letters p and q. For comments on this see footnote 4 above.
20It is the presence of this rule which distinguishes Feys’s logic from Lewis’s. None of Lewis’s logics weaker

than S4 contains this rule, and Lewis himself seems not to have appreciated the difference between this rule
and the S4 theorem □p ⊃ □□p (Alternatively ♢♢p ⊃ ♢p).
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Two methods make it possible to relate these kinds of logics to a
system of postulates (it seems to us obvious to call them logics of
the Aristotelian modalities). The logics of Strict Implication avoid
presupposing the logic of truth and falsity; their postulates intro-
duce, simultaneously with the true and the false, other modalities.
We will follow another path, indicated in particular by Gödel. We
will start from the logic of true and false and we will complete it
with postulates that will introduce the other Aristotelian modali-
ties.

Feys dropped Gödel’s S4 axiom □p ⊃ □□p to give the system now called T.
In the 1937 paper Feys seems unaware that he has produced a modal system
which is none of Lewis’s S1– S5.

10 McKinsey and Carnap
In 1945/46 both J.C.C McKinsey, and Rudolf Carnap produced accounts of
modality which justify particular Lewis systems. (I have discussed these in
Cresswell 2013.) McKinsey’s characterised S4 and Carnap’s S5.21 They were
however not really flexible enough to provide the generality that we have come
to expect for the multiplicity of systems which have been studied after the de-
velopment of the relational semantics for modal logic.22

11 Feys 1950

In 1950 Feys explicitly presents a survey of the systems in (Lewis and Langford
1932), together with two systems S10 and S20, which are like S1 and S2 except
that they lack the axiom p J ♢p.

As in the 1937 paper a large amount of the 1950 paper is to list the various
respects in which the theorems of the various systems of strict implication do
or do not match up with the theorems of the ordinary non-modal proposi-
tional calculus. In footnote 13 of this article Feys makes some remarks about

21Carnap’s 1946 study is in fact very similar to Wajsberg’s and on p. 41 in footnote 8 Carnap acknowledges
his debt to Wajsberg’s 1933 article.

22Hans Reichenbach also discussed modalities (for instance in Reichenbach 1954), but his work stands
somewhat outside the development of mainstream modal logic.
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the system now called T, which is the system presented in (Feys 1937). The
footnote refers to von Wright, who mentions material from his then forthcom-
ing (von Wright 1951b), in which the system is called M. As Feys notes, his
system (T) is taken from (Gödel 1933) by omitting the S4 axiom. Gödel’s
own paper only discusses a system which is (deductively equivalent to) one of
Lewis’s, and so may have caused Feys to miss the crucial fact that his own
system is not one of Lewis’s.

12 A.N. Prior
One of the clearest introductions to modal logic in the 1950s occurs in (Prior
1955). Prior was interested in modal logic from the early 1950s.23 In the Craft
of Formal Logic, a manuscript from 1952, Prior shews an awareness both of
(Lewis and Langford 1932) and of (Feys 1950), though he is more concerned
to discuss how problems which can be expressed in ‘Professor Feys’s notation’
had already been discussed by earlier thinkers, particularly in the 18th cen-
tury. So although he is becoming familiar with modal logic Prior does not
yet seem to have made it his own. He does adopt Feys’s symbol L for neces-
sity, which goes well with the modal operator M , as well as the Łukasiewicz
symbols for the truth-functional operators which he almost certainly got from
Bochenski. He was familiar with the work of G.H. von Wright, who, in (von
Wright 1951a), produces a system of deontic logic which Prior refers to in an
article published in the Australasian Journal of Philosophy later in that same
year.24 In that article Prior appears to suggest that his own interests do not
yet run to an appreciation of modern Modal/Deontic logic. His familiarity
with modal logic certainly emerges in (Prior 1952) where he imagines what
amounts to a two world model in which four truth values correspond to true
in both, true in the first and false in the second, false in the first and true in
the second, and false in both. He then points out that there will be formulae
whose validity in that model depends on there being only two worlds. But
perhaps Prior’s strongest contribution to modal logic was in his John Locke
Lectures at Oxford in 1956 (published as Prior 1957) in which he shewed how
to interpret modal logic as a logic of time. For he established in that work that
different assumptions about temporal ordering could lead to different systems

23Mary Prior stresses the importance of Prior’s teacher at the University of Otago, J.N. Findlay, whom she
reports as using (Lewis and Langford 1932) in a course in 1940.

24(Prior 1951). Page references are to the reprint in (Prior 1976).

Organon F 26 (3) 2019: 323–339



336 Max Cresswell

of modality. (Prior 1967, 27) speaks of a communication from Saul Kripke
pointing out that S4 was too weak to be the logic of futurity because it al-
lowed branching futures. This insight led inexorably to the semantic study
of modal logic in terms of a set of indices ordered by a relation which could
satisfy different conditions. Prior returned to New Zealand after his year at
Oxford in 1956, but at the end of 1958 took up a chair in Manchester.

13 Bayart 1958, 1959

In 1959 Saul Kripke produced a definition of validity, in terms of classes of
models, for quantificational S5.25 This was published in The Journal of Sym-
bolic Logic for that year. What was less noticed was that in Logique et Analyse
in 1958 Arnould Bayart produced a definition of validity for quantificational
S5 in which he used a set of ‘possible worlds’, acknowledging Leibniz but say-
ing that, for the purposes of logic worlds could be anything at all. Kripke of
course by 1963 had realised that worlds did not have to be models, as work
by authors like Kanger had supposed, but (Bayart 1958) explicitly denies that
they should be models. In 1959 Bayart produced a Henkin completeness proof
for quantificational S5. An English translation of Bayart’s two papers, using
more familiar notation and with an historical introduction and a commentary
is found in Cresswell (2015). (See also Cresswell 2016.)

14 Conclusion
Until the work of Kripke and others in the late 1950s and early 1960s modal
logic was frequently faulted through not having a viable semantic theory com-
parable to that produced for standard propositional and predicate logic. We
have seen that Feys invokes the axiomatic method in modal logic precisely to
compensate for this lack. What the possible-worlds semantics does reveal is
that it is the fact that modal logic has such a simple and intuitive metatheory
which goes a long way to explaining just why it survived for so long even when
its critics felt that it was uninterpretable.26

25It should be noted that the present survey has concerned itself solely with modal propositional logic. The
early developments in modal predicate logic begin with those found in (Barcan 1946; 1947) and elsewhere.

26The following list of references contains all the articles referred to in the text, together with other early
articles. It does not claim to be a complete bibliography of work in modal logic before the late 1950s.
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1 Introduction and initial difficulties

The material under (2) of the following quotation from Section 5 (entitled
“Classical meta-logic versus nonclassical meta-logic”) of (Brady and Rush
2009) provides the stimulus for the present discussion; the rest of the quotation
is included to provide context. Note that letters from the range p, q, r, . . . are
used as sentence letters (propositional variables) while A,B, . . . are metalin-
guistic variables over formulas of arbitrary complexity. The bibliographical
references have been adjusted to match the style used here:

(1) Intensional logic requires an intensional semantics.
This has been strongly argued by (Meyer and Routley 1977) and
in the appendix of (Brady 2003), rejecting extensional reduction
in favor of a semantics that more directly captures the meaning of
the object logic. But, what nonclassical meta-logic is appropriate?
Does this mean that it is the same logic as that of the object
language? This leads us to the second point.
(2) Trivial semantics (or toil-less semantics) is just that.
Meyer and Sylvan (né Routley) have also made this point, in con-
versation. Here, such a semantics interprets each connective ac-
cording to the logic of the object language, as follows:
I(p) is assigned T or not assigned T , for each p.
I(∼A) = T iff not (I(A) = T ).1
I(A&B) = T iff I(A) = T and I(B) = T .
I(A ∨B) = T iff I(A) = T or I(B) = T .
I(A → B) = T iff, if I(A) = T then I(B) = T .

A formula A is valid iff I(A) = T , for all assignments to its vari-
ables.
The Soundness and Completeness Theorems are then trivial. For
completeness, for a nontheorem N , I(N) = T would fail as a
result of the failure of the corresponding metalogical law, applied
to totally unconstrained assignments to its variables.

1In fact what appears in (Brady and Rush 2009) at this point is “I(∼A) = T iff not −(I(A) = T )”, but
the “–” is a typo (presumably intended as a hyphen linking “not” and “(I(A) = T )”. Four lines down, italics
are added here for the word “valid”, since the statement is intended as a definition.
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For the remainder of this section and the following two sections, we examine as-
pects – both technical and philosophical – of this passage and the background
against which it is set. Readers keen to get to the encounter with Halldén
promised in the subtitle, and described in the Abstract as threatening the
above triviality claim, may like to skim hastily over that material to arrive at
the start of Section 4, in which the crucial observations appear (Propositions
4.5–4.7). At the other end of the patience spectrum, those wanting to take the
scenic route over the terrain of Sections 1–3 should consult the ‘longer notes’
on those sections collected in the Appendix as references to them appear in
the main body of the paper.

In what follows, the notation “&”, “∼”, for conjunction and negation will
be used only when quoting Brady and Rush, and will otherwise be replaced by
“∧” and “¬”. The letter “I” used by Brady and Rush is intended to suggest
interpretation, and as we see, interpretations here are taken to be assignments
of truth-values, of which at least one is T . Since this is indeed the only value
mentioned in the above inductive definition of truth on an interpretation, there
is nothing to be lost in replacing the functional notation with a less committal
notation and writing “I |= A” in place of “I(A) = T”.

Remark 1.1 Nothing to be lost. . . and in fact, there may be something to
be gained by making this replacement: namely the avoidance of extraneous
complications. Such complications include the following, which arose in the
course of giving a semantics along these lines in (Humberstone 1996) – an
enterprise not there regarded as trivial – for the case of □ understood as
expressing something like metaphysical necessity. One issue here is that if
identities hold of necessity if at all, then stipulating that I(□A) = T if and only
if necessarily I(A) = T is in danger of committing us to: I(□A) = T if and
only if I(A) = T , for any I. (Instead of I(A), (Humberstone 1996) has “v(A)”
– “v” for valuation; see (Humberstone 1996) for a reaction to the danger.
No more will be said about (Humberstone 1996) in what follows, except
to point to some background clarification in note 3. The paper was written
before the difficulties for homophonic model theory presented in Section 4 were
noticed, and the fact that the main one stressed in that Section, connected
with Halldén incompleteness, does not arise for the modal logic in play there
does not guarantee that similar problems do not arise.) One might avoid this
result by saying, in an informal meta-metalanguage, that “I(□A)”, for a fixed
I and A, is somehow not a rigid designator and so the necessity of identities
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does not disallow contingent identity statements in this case, or again that
one rejects this principle anyway, or . . . But it seems better not to get into
debates about identity when the identity predicate of the object language is
not even under discussion. (It must be conceded that a shadow of the worry
remains after the expulsion of “=”: how does it get to be contingent, for a
fixed I and A, whether or not I |= A? Note also that it is not only in the logic
of metaphysical necessity but also in the logic of vagueness that identifying
the truth on an interpretation of a vague sentence with a something’s being
identical with something may raise difficulties for anyone thinking that identity
statements can be vague – (Evans 1978) and all that.) Though we continue
to use the I(A) = T notation when dealing with the explicit discussion in
(Brady and Rush 2009), we return to the pitfalls invited by doing so in Remark
4.4 below. ◀

Presumably it would not be appropriate to respond to the example de-
scribed in Remark 1.1 by saying that a necessity operator was not one of the
connectives explicitly listed in the above passage from Brady and Rush: the
cases listed are there by way of example, the intention being to illustrate a
general point arising with conditions for arbitrary sentence connectives; and in
any case, though considerable play is made in Section 4 with modal examples,
there is no special need to think of the □ figuring in them as representing
any kind of necessity. Perhaps the authors intend also to include the case of
quantifiers in the object language, but since their discussion is restricted to
sentential logic, let us follow their lead. But we do need quantifiers in the
metalanguage (and this is the reason the Abstract of the present discussion
talks about the metalanguage having at least the logical vocabulary of the
object language), since universal quantification is used tacitly over the A,B
in the conditions governing ∼, &, ∨ and → and then explicitly in the defini-
tion of validity near the end of the passage.2 Concerning the latter definition,
a further corrective adjustment to the text like those alluded to in note 1
could have been made and explained there, but it raises an issue that deserves
slightly greater attention than such those typographical matters. So that we
don’t have even the appearance of a definition in which a variable (here “I”)
appears free in the definiens but not the definiendum (“A is valid”), it would

2Adding an extra layer of complexity, we need, not only quantification over interpretations for validity but
then quantification over valid formulas (or more generally, valid inferences) in the definitions of soundness and
completeness – as remarked in (Williamson 2017, 159) – to say nothing of (typically) existential quantification
for the notion of provability.
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have been clearer to write “for all assignments I to its variables” (where this
used of variables is to the propositional variables or sentence letters of the ob-
ject language), but perhaps the authors did not do this because they wanted
to think of I as interpreting all formulas and not just as an assignment of
truth-values to the sentence letters. There are two ways of handling this issue
commonly encountered. One of them makes a notational distinction between
the assignment to the atomic expressions in question (here, the sentence let-
ters), I, as it might be, and then uses the inductive definition provided by the
four conditions just recalled to extend this to an interpretation function I+,
say, applying to all expressions (here, all formulas). The other is just to say
that an interpretation I is any function satisfying the conditions given, and to
note in passing that what I does to the atomic expressions in fact determines
what it does to all expressions. On the latter approach, which I assume is not
something that would raise an objection from Brady and Rush, the definition
of validity would just be that a formula A is valid iff for all interpretations I,
I(A) = T (or, perhaps preferably, for the reasons given in Remark 1.1: iff for
all interpretations I, I |= A). We return in Section 2 to what is being assumed
about this “iff” in the possibly non-classical metalanguage is supposed to be.

Setting that question to one side for the moment, what we have in the
quoted passage is an example of homophonic model-theoretic semantics – ho-
mophonic in the sense that items of the logical vocabulary of the object lan-
guage – in the present case, various sentence connectives – are paired up
with corresponding items from the metalanguage, which, in the case in which
the metalanguage literally includes the object language, will indeed ‘sound
the same’. The “model-theoretic” part of the description may seem somewhat
overblown for the deployment of interpretations lacking internal structure, but
it enjoys a certain currency for marking the relativity of truth to something
or other – models, valuations or interpretations (here I), contrasting with the
case of homophonic semantics in the (absolute) truth-theoretic tradition for
an interpreted language, in which there is no question of varying the interpre-
tation concerned.3 If in such model-theoretic semantics there is also an idle
relativity to a further parameter – such as a time or a world, or more neutrally,
a point in a Kripke (or similar) model – we can usefully follow the example of

3See (Humberstone 1996) for further discussion and references. A better name for present purposes might
be interpretational semantics, as in (Evans 1976), but this would be distracting below, because of the use
by Brady and Rush of the phrase “interpretational metalogic” whose exact significance, it will be suggested
below, is at best elusive. Further references to homophonic semantics for intensional languages can be found
in (Bräuner 2002, 364), though most of this is of the truth-theoretic rather than the model-theoretic kind.
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(Williamson 2017) (and its precursor and companion pieces (Williamson 2011)
and (Williamson 2014)) in speaking of a quasi-homophonic treatment in this
case, as well as being more fine-grained in the application of this vocabulary
to the individual clauses in the inductive definition of (interpretation-relative)
truth. Thus the Kripke semantics for modal logic treats the Boolean connec-
tives quasi-homophonically (the world parameter being idle) but the modal
operators heterophonically, since they are treated, not by modal clauses in the
semantic metalanguage but by (typically restricted) quantification in the met-
alanguage. Indeed, the introduction of the “quasi-homophonic” terminology
is only called for by such semantic accounts in which at least some vocabulary
is treated heterophonically, since if the ancillary parameter(s) is/are idle in
every semantic clause then we can repackage them along with what we were
previously thinking of as an interpretation into something and now think of
this whole caboodle – for example it can be an interpretation (or model) paired
with a world, to recall the case just mentioned – trading in quasi-homophonic
semantic for homophonic semantics.

It should be stressed that not every attempt to use the same logic at the
meta-level in discussing a certain object logic, even when the discussion con-
cerns the model theory for that logic, is a case of homophonic model-theoretic
semantics. For example, in the 1970s, W. Veldman and H. de Swart modified,
respectively, Kripke models (for intuitionistic logic) and Beth trees to give
structures for which (they claimed) intuitionistically acceptable completeness
proofs could be provided. The references can be found in (Dummett 1977,
§5.7);4 for scepticism about such ventures, see (McCarty 2008) and refer-
ences therein. A famous example from the following decade appeared in
(Meyer 1985) where a relevant-logically acceptable completeness proof w.r.t.
the (Routley–Meyer) heterophonic model-theoretic semantics is sought for the
logic R.5 More specifically, the model theory in both the intuitionistic and rele-
vant logical cases treats conjunction and disjunction quasi-homophonically but
implication and negation heterophonically. (Here in the case of relevant logic
we have the ‘Australian plan’ in mind, with “*” function treatment of nega-

4This is one point at which the discussion in the first and second editions of (Dummett 1977) differ,
though both writers are touched on in both editions and the difference is not pertinent to the present theme.

5The idea is that although this is not homophonic model theory, since the logic metalanguage is also (albeit
quantified) R we have what we might call an ‘isological’ semantic treatment. It would be nicer if we could say
homological here, but that term is already taken, though even if it weren’t, we wouldn’t be able to mirror the
homophonic/heterophonic contrast directly since heterological is likewise already spoken for – in Grelling’s
Paradox (and opposed there to autological).
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tion.6 Similarly, in (Girard and Weber 2018), summarised more fully in the
longer note ‘Bacon and others’ on Section 2 in the Appendix, the non-modal
logical vocabulary is treated homophonically while the modal vocabulary is
treated heterophonically (in a contraction-free metalogic). (Meyer 1985) de-
serves to be counted as famous, despite its never having been published (other
than as an ANU research report), on the strength of the frequency which its
description of the aim of the widespread practice – from which (Meyer 1985)
itself departs – of using classical logic in the semantic metalanguage for rel-
evant logic. The aim was said to be to “preach to the Gentiles in their own
tongue”, a description whose charm becomes especially apparent when we re-
call Meyer’s own early days as a Christian missionary (in Japan). Among
the items in the bibliography of the present paper for independent reasons in
which this turn of phrase is quoted are (Read 1988) (as well as (Aberdein
and Read 2009)) and (Weber, Badia and Girard 2016) – though there may
be more. Read’s own ‘Scottish Plan’ for the semantic of relevant logic (Read
1988, §7.3 and §§8.4–8.6) is, by contrast, not only metalogically relevant but
treats all vocabulary homophonically.7 (Priest 2006, 98) thinks that the use of
a non-classical metalogic is not just permissible but is be mandated by consid-
erations of integrity, writing that intuitionists and dialetheists take themselves
“to be giving an account of the correct behaviour of certain logical particles.
Is it to be supposed that their account of this behaviour is to be given in a
way that they take to be incorrect? Clearly not. The same logic must be used

6See (Meyer and Martin 1986) for the contrast between this and the (Dunn–Belnap or) ‘American plan’
approach. Brady and Rush touch on both in their discussion but the treatment of the latter on p. 495 is
somewhat garbled: we have clauses such as – to illustrate with the case of negation – I(∼A) = T iff I(A) = F
and I(∼A) = F iff I(A) = T , and it is remarked that when A and B are “classically evaluated, that is, I(A)
and I(B) each take only one value, that is, T or F”, then it “clearly follows that ∼A, A&B, and A ∨ B are
also classically evaluated.” But the uniqueness of the value is built into the functional notation from the start,
and if I is going to be a function, it should be assigning subsets rather than elements of {T, F} to the formulas
with things like “I(A) = F”, as just seen, replaced with “F ∈ I(A)” etc. For the first-degree entailments,
Belnap and Dunn dip a toe into homophonic waters in §2.5 of (Belnap and Dunn 1981), reproduced as §80.25
of (Anderson, Belnap and Dunn 1992).

7Semantic consequence is handled by modalizing the relevant logic, so at first blush the approach seems
truth-theoretic rather than model-theoretic, in the absence of anything like quantification over interpretations,
though Read thinks otherwise: first new paragraph on p. 163. Whatever the right view is of this issue, the
enterprise is highly engaging. The idea is to have relevance fall out of the idea of necessary truth-preservation
rather than be tacked on as an additional filter, by taking truth preservation as a matter of not having (as I
shall put it) true premisses while having a false conclusion, where this “while” is understood as a metalinguistic
deployment of the intensional (‘fusion’) rather than the extensional conjunction which relevant logic is famous
for distinguishing – more widely encountered, perhaps, in subsequent years as the multiplicative rather than
the additive version of conjunction from linear logic. Some further aspects of (Read 1988) were touched on
in the review (Humberstone 1991).
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in both ‘object theory’ and ‘metatheory’.”8 For more on this, see the longer
note ‘Dummett and others’ in the Appendix.

These heterophonic uses of non-classical logic in the metatheory of a cor-
responding non-classical logic are far from toil-free – or ‘toil-less’ as it is put
in the quoted passage – in which Brady and Rush are certainly not suggest-
ing that the only way to use a non-classical meta-logic is in the is this, as
they say, trivial semantics. The gist of the qualms raised below will not be
that homophonic model theory in the style presently envisaged delivers its
soundness and completeness results in too trivial a way for them to have any
significance, but rather than they are not automatically guaranteed to deliver
the results in question, contrary to what is said in the final paragraph of the
quoted passage. The main point of concern will be raised in Section 4, but
immediately we shall be able to see that all is not quite right.

The problem arises in a small (because easily remedied) way already over
the presentation of the homophonic model theory under (2) in the passage
quoted, and in particular in its treatment of sentence letters (propositional
variables). The inductive definition of I(A) = T begins with a condition

I(p) is assigned T or not assigned T , for each p

which reminds us that the discussion is couched in a potentially non-classical
metalogic in which the law of excluded middle is accordingly not to be taken
for granted but must be explicitly assumed if it is needed. An incidental
correction is called for, in that it is not I(p) that is “assigned” anything but p
that is assigned T (or otherwise) by I, so we what is really intended is rather

For all sentence letters p, I(p) = T or not(I(p) = T ). (*)

But was there any need to impose this condition in the first place, supposing
that we – or the classically educated among us – have managed to get our

8In another frequently cited passage from the earlier (Priest 1984, 161), Priest urged a similar line not
just for the logic/metalogic distinction but for the language/metalanguage distinction: “The beauty of the
paraconsistent approach to logic is that it finally renders the object-language/meta-language distinction un-
necessary in any shape or form.” The frequent appeals to that distinction in our discussion might seem to
make it something Priest would object to, though as long as he is prepared to distinguish between using
and mentioning an expression, the hope would be that only minor reformulations here and there would be
needed to render the discussion unobjectionable. Some of the discussion of Priest’s work in (Humberstone
forthcoming) suffers from a failure to distinguish, as is done here, between isological semantics in general and
homophonic semantic in particular, as Priest notes at the end of his reply to that contribution in the volume
in which (Humberstone forthcoming) appears.
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heads around seeing it as a non-vacuous? Surely not, if this is supposed to
be a general treatment, since this gives an unwanted illustration of how the
semantics described delivers its verdicts of validity or invalidity, in the present
case of the former verdict:

Example 1.2 Let I be an arbitrary interpretation for the language with con-
nectives as described in the passage quoted from Brady and Rush and let us
consider for an arbitrary interpretation I and sentence letter p, whether or
not I(p∨ ∼p) = T . The inductive clause for ∨ tells us that this is the case iff
I(p) = T or I(∼p) = T , and the clause for ∼ tell us the second disjunct here
holds iff not(I(p) = T ), so presumably altogether the account tells us – and
if it doesn’t, it doesn’t allow us to compute I(A) from the various I(B) for
proper subformulas B of A in any instance – that I(p) = T or not(I(p) = T ),
which is what (*) says must be satisfied for an arbitrary I and p; thus what
we have shown is that the formula p ∨ ∼p is valid now for any sentence letter
p. (Could we say instead that A ∨ ∼A is valid for any formula A? We don’t
know enough about the meta-logic to whether this general form is available.
If it is not, eyebrows will naturally be raised as the object logic’s claim to
being regarded as a logic at all; see note 30.) A more rigorous version of the
reasoning here can be presented using the apparatus introduced in Section 2;
in particular, we will attend to the kind of equivalence needed to legitimate
the substitutivity or replacement properties invoked here. ◀

Now, Example 1.2 is bad news. Nobody said anything about the logics
under discussion being restricted to those accepting the law of excluded mid-
dle, which is described in (Brady and Rush 2009, 494) as one of the two key
properties of classical negation (the other being inference by disjunctive syl-
logism), and not one to which our authors are especially attracted: “Second,
when we come to apply logic to the physical world, we discover that there is
no definitive guide enabling the separation of subjects into, for example, those
to which the law of excluded middle applies, and those to which it does not.”
(Brady and Rush 2009, 497). Further clear reluctance to endorse unrestricted
appeals to excluded middle can be found in (Brady and Rush 2008). Thus the
best thing to do with (*) is to pretend it was never laid down as a condition.9

The fact that Brady and Rush did impose that condition should give us
pause over the confidence with which the quoted passage finishes:

9Brady and Rush may have a reply available which hangs on an obscure distinction we shall, in the following
section, find them drawing between the interpretational metalogic and the underlying metalogic.
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The Soundness and Completeness Theorems are then trivial. For
completeness, for a nontheorem N , I(N) = T would fail as a
result of the failure of the corresponding metalogical law, applied
to totally unconstrained assignments to its variables.

No argument is given in connection with soundness – though the senti-
ment expressed seems correct and will be illustrated in Section 2 – and the
treatment of completeness begins with the same disregard of free variables as
we saw in the definition of validity, leaving “I” unbound in the assertion that
for an arbitrary nontheorem N , I(N) = T would fail: what I? No I has been
mentioned! Because the definition of validity began with a universal quanti-
fier, what we have to show is that it is not the case that for all I, I(N) = T .
If, by contrast with intuitionistic logic say, our logic happens to treat ¬∀I and
∃I¬ as equivalent, then we can formulate the task of showing completeness
as that of showing the existence of some interpretation I for which we do not
have I(N) = T , and in view of Example 1.2 p ∨ ∼p for a logic lacking this as
a theorem (with p a sentence letter), this cannot be done – we precisely do
not have all the valid formulas provable. The question of whether, with (*)
discarded, there remain problems about completeness, will remain in abeyance
until Section 4, where grounds for a negative response will be given – unless
the question is to be reconstrued entirely (a possibility aired in Section 5).
The suggestion that we know that not every interpretation verifies N “as a
result of the failure of the corresponding metalogical law, applied to totally
unconstrained assignments to its variables” sounds like a gesture in the direc-
tion of an argument, but can it be spelled out more precisely? We return to
this question in the discussion following Example 2.1 below (as well as in Sec-
tion 5). An incidental issue arising at this point discussed in the Appendix in
the longer note ‘Soundness without reference to a particular axiomatization’.

2 More detail

We may summarize the homophonic model-theoretic treatment of connec-
tives by describing its clauses in the truth-definition schematically. With the
“I(A) = T” form replaced by “I |= A”, the general case, for n-ary connec-
tive # whose metalinguistic analogue we denote by #, would be as follows,
understood as holding for all A1, . . . An:
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I |= #(A1, . . . , An) iff #(I |= A1, . . . , I |= An). (#/#)

Under (2) in the quotation from (Brady and Rush 2009) given above,
“not”, “&”, “∨” and “if . . . then ” are taken as ways of writing what in
the notation deployed in (#) would be written as ∼, &, ∨, →.10 Some may
prefer to omit the underlining and say we are dealing with the same connec-
tive; certainly every logical principle holding for the various # of the object
language must hold in the meta-logic for the corresponding #, if the discus-
sion under (2) is taken to be an elaboration of an affirmative answer to the
question under (1): “Does this mean that it is the same logic as that of the
object language?”. Taken literally, this affirmative answer means even more,
adding the converse demand: every metalinguistic connective must also be
the analogue of some object language connective. This raises the question of
the status of the “iff” pervading the example given by Brady and Rush, and
retained in the formulation of (#/#).

One might think that Brady and Rush assumed that “. . . iff ” was to be
understood as “If . . . then and if then . . . ”, and thus already available as a
derived connective given the “and” and “if/then” (or & and →) appearing on
the right-hand sides of the clauses of the inductive definition of I(A) appearing
in the quoted passage. But if the example they are describing there, with
an unspecified logic governing the connectives involved in those clauses, is
meant to be representative, there is the possibility of the object logic providing
us without the materials to define such an “iff”. In this case two options
present themselves: we could either make it clear that the metalanguage may
contain such additional logical vocabulary, not present in the object language,
or subject the claim that ‘trivial’ semantics is always available, whether or
not it deserves to be called trivial, to the condition that only such logics are
under consideration as provide the additional expressive devices needed.

This, however, would not be what Brady and Rush have in mind, though
one does have to look around a bit to see this. The discussion in (Brady and
Rush 2009) immediately following that quoted in Section 1 is this (p. 505f.):

There seems to be a paradox here, which needs resolution. In or-
der to do this, we need to find a meta-logic which is something

10We do not underline metalinguistic quantifiers ∀, ∃ since for present purposes they have no analogues in
the (purely sentential) object language to contrast with.
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of a compromise between mimicking the logic of the object lan-
guage and using the standard classical meta-logic. Perhaps we can
answer this question best by using the distinction between inter-
pretational and underlying meta-logic, made by Brady in (Brady
2003, chapter 13), where the interpretational meta-logic interprets
the connectives and quantifiers in an appropriately nonclassical
way, while the underlying meta-logic interprets the logic of the
meta-linguistic infrastructure supporting the interpretation of the
connectives and quantifiers.

Since this follows straight on from the passage quoted in Section 1, we
might pause to ask what it is from the end of that passage to say that there
“seems to be a paradox here, in need of resolution.” The point is presumably
that it seems wrong to impose an alien (e.g., classical) metalogic on the (typi-
cally non-classical) object logic under discussion, but if we respond to this by
instead using the same object logic at the metalogical level, then this trivializes
the discussion by making the provision of soundness and completeness results
automatic. Not exactly a paradox, perhaps, but something which if it were
a problem, might be worth responding to. In Section 4 we shall see that the
would-be problem does not quite arise as Brady and Rush think: such results
are not automatically available for homophonic model-theoretic semantics.
Where they are forthcoming, however, one may wish to do non-homophonic
but still ‘isological’ model theory (to use a term from note 5). Perhaps that
is what Brady’s interpretational vs. underling metalogic distinction is meant
to amount to. Digging a little further, we shall come around to something
we can bring to bear more usefully on the earlier passage, and that concerns
the significance of the “iff” that appears in it. The excavation in question is
deferred to the Appendix (‘Brady on the interpretational meta-logic’).

Since the logical devices required for homophonic model theory of the kind
described as trivial in (Brady and Rush 2009) include not only a suitable
“iff” but also the universal quantification (over interpretations I) used in the
definition of validity,11 if we want to retain the restriction to purely sentential
languages, aspects of the first option will be needed to deal with that, whether

11Since conditions of the form (#) above – or those from Brady and Rush – tacitly involve quantification
over all interpretations I and formulas A1, . . . , An, one might discern a universal quantifier needing to be made
explicit here too. However, one could conceivably take these conditions as schemata and avoid the issue. But
when it comes the notion of validity, especially as this features in antecedent position in an implication, the
universal quantification over interpretations is inescapable, as in saying that if a given formula A is valid, it
is provable (a consequence of the claim that object logic is complete).
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or not the same route is taken in the case of “iff”. (A formula A is defined to be
valid in the quotation above if “I(A) = T , for all assignments to its variables,”
which more explicitly must be take to mean “I(A) = T – or “I |= A”, on the =-
free notation preferred treatment here – for all interpretations I”.) Whether or
not we take “iff” to be # for some (not necessarily primitive) object language
binary connective #, we should pause for a moment to consider what its logical
behaviour needs to be like.

The question of what is required of the logic of “iff” raises the prior question
of how to conceive of logics for present purposes. Since the envisaged toil-free
semantics lays down conditions governing the behaviour of object language
connectives such as ∨, saying that I |= A ∨ B iff I |= A or I |= B (for
all interpretations I, and formulas A,B), the logic had better tell us what,
by its lights, follows from such conditions. Accordingly it is natural to take
logics to be consequence relations, even though the remarks on soundness
and completeness at the end of the quotation from (Brady and Rush 2009)
above show that their primary conception of logics appears to be as sets of
formulas. However, other parts of (Brady and Rush 2009), such as p. 502,
to say nothing of such ventures as (Brady 1994) and (Brady 1993), show
that even when setting out a logic axiomatically, they have their eye on the
consequence relation induced by the axiomatization in more or less the familiar
way,12 and we shall follow suit here.

Having opted to conceive of logics as consequence relations, we can resume
our discussion of the issue of “iff”, and suggest that a natural way to resolve
the issue is to require that we are dealing with an equivalential consequence
relation, which is to say a consequence relation ⊢ whose language, L, say,
provides a set of formulas E(p, q) in two variables which is such that for all
A,B ∈ L, we have the following, E(A,B) being the set of formulas resulting
from substituting A and B respectively for p and q in the formulas in E(p, q):

E(A,B), C(A) ⊢ C(B) for all 1-ary contexts C(·) and ⊢ E(A,A)
12The familiar – or simple-minded, as it is called in (Humberstone 2010) – way of defining a consequence

relation from a Hilbert system with given axioms and rules is that we take A to be a consequence of a set
of formulas if A can be obtained from formulas in the set together with axioms, by applications of the rules.
In (Brady and Rush 2009) we are not quite dealing with a standard Hilbert system, however, whence the
description as “more or less” familiar, because of the presence, as in numerous other publications of Brady’s, of
what he calls meta-rules. As suggested in (Humberstone 2008, 442), these play the role of sequent-to-sequent
rules in a Gentzen system, and we may define the consequence relation induced by a Hilbert system with
meta-rules to be the least consequence relation closed (when considered as a collection of single-succedent
sequents) under these rules and such that when A can be derived from the axioms and the formulas in a given
set by the (ordinary) rules, A is a consequence of that set.

Organon F 26 (3) 2019: 340–404



Semantics without Toil? 353

where, on the left, and the “C(·)” notation is as explained in note 45 (in
the Appendix), while, on the right what is meant is that for each formula
D ∈ E(A,A), we have ⊢ D (i.e., ∅ ⊢ D). To make life easier, we will take
the additional step of assuming that E(p, q) contains a single formula, to be
written as p ⇔ q; this is done for expository convenience and is not essential
to the points under discussion. While no corresponding such connective is
presumed to be part of the object language’s vocabulary, it may often be that
there is a corresponding connective, ↔, say, and we may take ⇔ as ↔.

When referring to the consequence relation on the metalanguage for dis-
cussing the object-logical consequence relation ⊢, we will co-opt the underlin-
ing convention just recalled and denote the metalogical consequence relation
by ⊢. From a similar desire to make it quite clear whether it is the object
language or the metalanguage that is issue, we continue to use capital Latin
letters as schematic for object language formulas, but use lower case Greek
letters as schematic for formulas of the metalanguage. With all these assump-
tions and conventions in force the above equivalentiality conditions emerge as
(2.1):

(a) ⊢ φ ⇔ φ and (b) φ ⇔ ψ, χ(φ) ⊢ χ(ψ) (2.1)

understood as holding for all formulas φ, ψ, χ (or χ(·)) of the metalanguage,
with a similar understanding in the case of the equivalent set of conditions
(2.2):

(a) ⊢ φ ⇔ φ, (c) φ ⇔ ψ, φ⊢ ψ, and (d) φ ⇔ ψ ⊢ χ(φ) ⇔ χ(ψ) (2.2)

The (2.1) formulation has the pleasant feature of echoing for ⇔ the nat-
ural deduction introduction (in the case of (a)) and elimination rules (in the
case of (b)) for the identity predicate in first-order logic (a theme taken up in
Humberstone 2011, 603f.), while the (2.2) formulation show the relation be-
tween having a set (here a singleton set) of equivalence formulas and having a
set of implication formulas, as these notions figure in contemporary algebraic
semantics: for the latter, retain (2.2a, b) and drop (2.2c), preferably at the
same time re-notating “⇔” to “⇒” to avoid confusion.13 Now we can be more

13Note that these conditions are considerably weaker than those mentioned in the Appendix (note 45) in
connection with Rasiowa.
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precise about the “iff” in (#/#), repeating it here as clarified (though not
re-named):

I |= #(A1, . . . , An) ⇔ #(I |= A1, . . . , I |= An). (#/#)
The point of all this is that to cash out the interpretation-relative truth-

conditions of complex formulas in terms ultimately of their atomic constituents’
truth-conditions in accordance with the homophonic inductive clauses, we
need to make replacements in the scopes of various connectives. To take the
simplest possible case:

Example 2.1 Suppose, to give the simplest possible illustration, that we
have two object-language one-place connectives □ and ¬ and accordingly two
matching metalinguistic connectives □ and ¬, as well ⇔ as the universal
quantification over formulas and interpretations which is invisible in (#/#)
but taken to be present in the instances of this schema we invoke (with n = 1
in each case) for these connectives. We want to calculate when I |= □¬p, say.
(□/□) tells us that for any I and A, we have I |= □A ⇔ □(I |= A), so taking
A and ¬p we have

I |= □¬p ⇔ □I |= ¬p (2.3)
and similarly invoking (□/□) we get

I |= ¬p ⇔ ¬(I |= p) (2.4)

Now we may instantiate the (meta-)schema (2.2d) with (2.4) on the left and
taking χ(·) as □(·):[

I |= ¬p ⇔ ¬ (I |= p)
]

⊢
[
□ I |= ¬p ⇔ □¬(I |= p)

]
Here, to make it clear among a plethora of various turnstiles that the main
relational symbol here is the ⊢, I have put square brackets round the formulas
represented as φ ⇔ ψ and χ(φ) ⇔ χ(ψ) in (2.2d). Since our semantic theory
for the object logic delivers (as (2.4)) the formula on the left, the right-hand
side here is a consequence, according to the metalogic ⊢, of that theory, and
this formula

□ (I |= ¬p) ⇔ □¬(I |= p) (2.5)
has for its left-hand side the right-hand side of (2.3), and the conditions laid
down for ⇔ suffice to ensure that for any α, β, γ,
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α ⇔ β, β ⇔ γ ⊢ α ⇔ γ,

so taking α, β, γ as I |= □¬p, □(I |= ¬p), and □¬(I |= p) respectively, we get
from (2.3) and (2.5), the final stage to be reached in spelling out the truth-on-I
conditions of □¬p:

I |= □¬p ⇔ □¬(I |= p),

which completes our illustration – laborious as it has been for such a simple
point – of the reason we need a “⇔” in the metalanguage with the properties
we have demanded of it (or at least a set E(p, q) of equivalence formulas to
play the p ⇔ q role). ◀

Let us turn now to the remark with which the passage from (Brady and
Rush 2009) quoted in Section 1 concluded:

The Soundness and Completeness Theorems are then trivial. For
completeness, for a nontheorem N , I(N) = T would fail as a
result of the failure of the corresponding metalogical law, applied
to totally unconstrained assignments to its variables.

The sudden reference out of nowhere to I already attracted our attention in
Section 1, but here we want to attend to the soundness side of the case. (We
return to the issue of semantic completeness in Section 4, and to what Brady
and Rush say about it in the passage just quoted, in Section 5.) By way of
commentary on the triviality claim for the soundness result, let us take as
an example of our object language the purely implicational logic BCK. As
already noted, what we really need to have in mind is a consequence relation,
certainly for meta-logical reasoning and in this case, as already noted, we
will need more than just implication in our logical we will also need universal
quantification, so if the object logic is given by the consequence relation ⊢BCK
defined presently, then the metalogic will be governed by a consequence re-
lation – ⊢ BCK – which mimics ⊢BCK propositionally but also includes quan-
tificational and equivalential resources. Section 1 stressed also the need to
include an ‘iff’ surrogate to handle the inductive definition of truth (on an
interpretation) and ⊢BCK is well known to provide a set E(p, q) of equivalence
formulas in the shape of {p → q, q → p}, which, in order to stay as close to
the original passage from Brady and Rush, we shall condense into a singleton
presently for the case of ⊢ BCK . Returning to ⊢BCK itself, this consequence
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relation is defined to relates a set Γ of formulas to a formula C just when C
can be obtained from the formulas in Γ by successive applications of Modus
Ponens (the rule taking us from A → B and A to B) to formulas which are
either elements of Γ or instances of the axiom schemes

(B → C) → ((A → B) → (A → C)) (B)
(A → (B → C)) → (B → (A → C)) (C)
A → (B → A) (K)

Although in other publications Brady has concerned himself with the se-
mantics of rules and consequence relations, the emphasis in the passage quoted
from (Brady and Rush 2009) seems to be on soundness and completeness
for logics as sets of formulas and thus as potentially presented by a Hilbert
system – skirting around the issue raised in the longer note ‘Soundness with-
out reference to a particular axiomatization’ on the preceding section (in the
Appendix) – which in the current instance amounts to showing the validity
( = truth on all interpretations) of, respectively, all and only those formulas
which are ⊢BCK-consequences of the empty set.

And it is clear in general outline how the recipe for a soundness proof
sketched in the passage quoted is supposed to go. In relatively informal terms,
taking the case of (K) as the shortest schema by way of illustration, we need
to show that any instance of this schema is valid. So let us take an arbitrary
interpretation I, with a view to showing that I |= A → (B → A), A and B as
in (K), now taken as standing for particular unspecified formulas rather than
as general schematic letters. Let us recall the specific instance of (# /#) #
is →:

I |= A → B ⇔ (I |= A → I |= B). (→/→)
Giving the name (K) to the corresponding meta-logical schema, i.e. φ →

(ψ → φ), we reason as follows, using ⇔ as above for convenience (though
since {p → q, q → p} is a set of equivalence formulas for ⊢ BCK , we don’t
actually need to wheel in a new connective here).

1 I |= A → (I |= B → I |= A) instance of (K)
2 I |= A → I |= B → A replacing the rhs of 1 by (→/→)
3 I |= A → (B → A) from 2 by (→/→) again
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For line 1, a more explicit annotation might run as follows: for any given
formulas A,B of the object language, the metalinguistic formula at line 1 is
an instance of the schema (K). Since 3 is established for arbitrary I, A,B we
conclude that every instance of (K) is valid – though we are not formally
introducing the metalinguistic universal quantifier into the discussion – and
since we can evidently reason similarly in the case of the other axiom schemes,
we have all we need by way of a proof of soundness for the axiom system except
for showing that the rule Modus Ponens preserves validity. But we can show
something stronger: not just that when formulas A → B and A are valid (true
on all interpretations) so is B, but that for each interpretation I, if A → B
and A are true on I then so is B. Naturally we need to help ourselves to a
little bit of the homophonic semantic theory for ⊢ BCK , namely (→/→), which
can here be understood not as universally quantified but as pertaining to the
specific A,B featuring in an arbitrary single application of Modus Ponens. In
other words, we can show

[
(→/→), I |= A → B, I |= A

]
⊢ BCK

[
I |= B

]
(mp)

For this we have worked our way from the three left-hand formula here to that
on the right, using the resources of ⊢ BCK , so, calling our starting formulas
1, 2, and 3, we may set things out vertically again, writing out the current
(→/→) explicitly for line 1:

1 I |= A → B ⇔ (I |= A → I |= B)
2 I |= A → B

3 I |= A

4 I |= A → I |= B From 1, 2 by (2.2c)
5 I |= B From 3, 4 by Modus Ponens for →

Note that if we use the set {p → q, q → p} of equivalence formulas already
mentioned then the appeal to (2.2c) in line 4 would itself by an appeal to
Modus Ponens for →, as in line 5.

Accordingly we conclude that whenever A1, . . . , An ⊢ BCK B, for any in-
terpretation I, if I |= A1, . . . , I |= An, then I |= B, and not just for the case of
n = 0: we are not just showing that the outright theorems of BCK are valid,
but soundness in the stronger sense that any syntactic consequence by ⊢BCK
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of some formulas is a semantic consequence of them in the sense of being true
on every interpretation on which all of them are true. And of course, there
is a bit of hand-waving, already acknowledged, on the quantificational front
here, but the point is to illustrate that the correspondence between aspects
of the meta-logic ⊢ BCK and the matching aspects (axioms and rules) of the
object logic make the issue of soundness a trivial one. So here I am agree-
ing with what Brady and Rush don’t say but might well have said: we have
been discussing soundness, whereas what they actually say concerns a simi-
lar match-up between object and meta-logical principles in connection with a
toil-free proof of completeness (in the general case). We return to that idea
in Section 5. The reason the hand-waving over such things as the quantifica-
tional inferences required in the above discussion of soundness, as well as the
inductive structure of the proof, is being taken as cause for no great concern
is that by the end of the following section we will stop trying to conduct the
discussion in a weakening of classical logic and look instead to an extension of
classical logic for which, if Brady and Rush’s remarks are correct, it should be
equally trivial to provide a proof of soundness and completeness w.r.t. homo-
phonic model-theoretic semantics. Since it is the discussion from (Brady and
Rush 2009) that we are principally taking up here, a few comparative remarks
on related work are postponed to the Appendix (‘Bacon and others’).

3 Weaken your metalogic: easier said than
done

So far we have mostly gone along with the idea that it is a simple matter
to shift from the use of a classical metalogic for reasoning about a weaker
object logic to the use of a weaker – indeed exactly correspondingly weaker
– metalogic. It is certainly easier said than done to shift to a weaker or
indeed to a stronger metalogic than one finds oneself with, if “shift to” means
“come to adopt as one’s working logic”; some considerations highlighting the
problematic nature of such a procedure can be found in (Berger 2011).14 Here

14The problems seem somewhat exaggerated, in the case Kripke’s envisaging a reluctance to endorse ∀E,
or universal instantiation (‘UI’) as it is called in (Berger 2011) (see esp. p. 183 for this issue of this reluctant
reasoner), on the part of someone who is not only reluctant to draw conclusions in accordance with this rule
but is instead inclined to infer the negations of the instances in question (‘Perverse Instantiation’, p. 185). One
would surely want to say of that the former reasoner does not understand what is written as “all” (or “∀”) as
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we are concerned not so much with endorsing a weaker logic as with being able
to see what follows from what from the perspective of such a logic, when the
‘what’s that are involved are formulated with an indifference to details which
are logically immaterial by the lights of one’s customary working logic.

There are evidently many issues in the philosophy of logic involved here
and the intention will be to by-pass them by changing examples to that we
can examine the fate of Brady and Rush’s triviality claim for completeness
results w.r.t. homophonic model-theoretic semantics when the logic in question
is an extension of classical logic rather than a weaker logic proposed as an
alternative to classical logic. But to motivate this change of tack, something
needs to be said about how in fact it is anything but a simple straightforward
matter to shift – in the sense just clarified – to a weaker logic, whether or not
one’s starting point happens to be classical.

In fact a little has already been said, in Section 1, with the point that not
every weaker-than-classical logic endorses the classical equivalence between
negated universal statements and existential statements with negated con-
tent. Thus we get the oft-remarked inverse relationship between deductive
power and discriminatory power.15 In the ¬∀I vs. ∃I¬ case just recalled, for
instance, one could define validity1 and the validity2 of a formula as its truth
on all interpretations for the former and as the non-existence of an interpreta-
tion which it is false in the latter. These formulations are meant to invoke the
∀I and ¬∃I¬ regimentations, understood intuitionistically. It does not seem
obvious to one at home in a logic in which these are equivalent which, out of
validity1 and validity2 best represents what had always seemed to be the single
undifferentiated notion of validity. In a similar vein, Kreisel, perhaps the first
logician to consider the possibility of an intuitionistically acceptable complete-
ness proof for intuitionistic (predicate) logic (in (Kreisel 1962)) by supplying
a second-order notion of validity for Heyting’s predicate calculus16 and then
distinguishing completeness, in respect of a formula A, as Valid(A) → Prov(A)
(to use the earlier notation now for Kreisel’s concepts) weak completeness in

universal quantification, while the latter, further, understands “All Fs are Gs as” as “No Fs are Gs”. (Here we
hedge, as in (Berger 2011), over the issue of restricted vs. unrestricted quantifiers.) Cases of disagreement in
reasoning according to rules which go beyond those uniquely characterizing the logical constant in question
would, however, be more problematic. (See subsection 4.32 of (Humberstone 2011).) The same applies to
Lewis Carroll’s prototype, of the tortoise reluctant to reason in accordance with Modus Ponens; in this case
a loose parallel to Kripke’s Perverse Instantiation is provided by Haack’s ‘Modus Morons’ (in (Haack 1976)).

15For references, discussion, and some caveats, see (Humberstone 2007a).
16(Dummett 1977, §5.6) provides further discussion of this and other approaches.
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respect of A as ∼∼(Valid(A) → Prov(A)), lifting this terminology to a logic
(in particular to Heyting’s) when the corresponding property is possessed in
respect of all formulas. (Note incidentally that this has nothing to do with
the usual ‘derivability’ vs. ‘outright provability’ contrast between strong and
weak completeness or between the similarly named properties from (Bacon
2013), touched on in the longer notes on Section 2 in the Appendix, headed
‘Bacon and others’.)

What the adherent of a weaker logic regards as the apparatus for making
finer discriminations in the subject matter than are available to the adherent
of the stronger logic, who is faced instead with a proliferation problem: how
on earth to respond the requirement to ‘deconflate’. This of course arises not
just with characteristically metalogical vocabulary such as valid and complete
(as it does in other specific areas: intuitionistically we have non-empty vs.
inhabited sets/species, apartness vs. non-identity of real numbers and so on),
but to the core logical vocabulary itself. Sticking with the case of intuitionistic
logic as seen from a classical perspective, should one represent “Only F s are
Gs” as “∀x(Gx → Fx)” or as “∀x(¬Fx → ¬Gx)”? Or again “¬∃x(Gx∧¬Fx)?
Even though as candidate representations from the point of view of English
syntax, the last two might appeal on the grounds that the negations involved
may explain the appearance in only contexts of negative polarity items – “She
only ever visits on Fridays” – semantically and logically one is not accustomed
to making much of a fuss about which to write. In fact the first pair here raise
another specifically metalogical choice for how to construe completeness for the
case in which a contraposed conditional is not equivalent to the original option
remaining after a notion of validity has been settled on: do we require that for
all formulas A, Valid(A) → Prov(A), or instead that for all A, ¬Prov(A) →
¬Valid(A) (with a corresponding distinction for soundness). Although what
one usually wants from anything that would be pronounced as “if and only” if
would be a connective with the equivalential properties described in Section 2,
favouring the choice of A ↔ B as standardly defined by (A → B) ∧ (B → A)
rather than the intuitionistically non-equivalent (A → B) ∧ (¬A → ¬B),
which does not support replacement in the same way, who is to say for which
occurrences in one’s own work a material biconditional should give way to the
latter biconditional instead – not to mention other classically equivalent but
intuitionistically non-equivalent candidates – (A∧B)∨ (¬A∧¬B), and so on?
A further example of this phenomenon is given in the Appendix (see ‘Bell and
others’).
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An embarras de richesses arises at another level also, when, given a theory
with classical logic as its background logic, an attempt is made to specify a
corresponding theory with a weaker logic in the background. Thus, for exam-
ple, (Kreisel 1958), p. 371f. writes “The theory is an extension of Heyting’s
arithmetic, by which we mean the system obtained by adding the non-logical
axioms of classical arithmetic to Heyting’s predicate calculus.” Here we are
not making the familiar point that citing a theory does not suffice to single
out any particular axiomatization of it. What is currently problematic, rather,
arises from citing a particular axiomatization – and in the context of Kreisel’s
discussion, the Dedekind–Peano axioms are no doubt what is intended – and
then saying that one uses ‘these very axioms’ with a weaker background logic
(here intuitionistic predicate logic) to axiomatize the corresponding weaker
theory. And the problem is that although we are talking about the specifi-
cally non-logical axioms, they are shot through with logical vocabulary, and
different theorists may have made different choices as their official account of
the latter vocabulary, differences which are completely immaterial with clas-
sical logic in the background, for example regarding A → B as abbreviating
¬A ∨B, or as abbreviating ¬(A ∧ ¬B), or as primitive – in the last case per-
haps alongside ¬ with ∧ and ∨ takes as defined in any convenient way – but
which of these is taken over into the (for the present example) intuitionistic
case makes a great difference in view of their non-equivalence according to the
weaker logic. That is, there is really no such thing, from the perspective of the
weaker logic, as the non-logical axioms to be used for the weaker theory. To
illustrate the point with a weakening of classical logic closer to Brady’s heart
(though far too slight a weakening for his own tastes), we might recall the
issues arising (see (Anderson, Belnap and Dunn 1992, 430)) over whether to
formulate an induction schema in relevant arithmetic (with underlying logic
R) as (

A[0] ∧ ∀x(A[x] → A[x′])
)

→ ∀xA[x],
where “x′” is for the successor of x, on the one hand or instead as

A[0] →
(
∀x(A[x] → A[x′]) → ∀xA[x]

)
,

on the other. A related contrast (conjunctive antecedent vs. iterated implica-
tion) has been discussed in the literature on the identity relation in relevant
logic: which is the appropriate way of expressing the transition from an iden-
tity statement t = u along with a statement involving t to the corresponding
conclusion with u? (See (Mares 1992), (Kremer 1999).)
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To avoid all such challenges, let us switch to a setting in which as much
of classical logic is available in the metatheory. Indeed, one of the author’s
students (Joel Towell) asked the following question on first reading Section 5
of (Brady and Rush 2009): What would they say about what they present as
trivial ‘toil-less’ semantics if it were presented in this style for classical proposi-
tional logic itself? A good question: indeed, what difference is there between
perfectly orthodox presentation of the semantics – except perhaps that in-
terpretations might be called (Boolean) valuations – and the much-maligned
trivial semantics? Soundness and completeness of a particular proof system
w.r.t. this semantics does not seem trivial in the sense of being completely
uninformative. But the classical switch I have in mind is not quite this be-
cause the aim is not so much to rebut the suggestion that homophonic model
theoretic semantics is pointlessly uninformative as the suggestion that it is
automatically available, with soundness and completeness results effortlessly
forthcoming. For this purpose, we need an extension of classical propositional
logic, which in view of its Post completeness, will have to be couched in an
expansion of its language. The simplest such expansion is the language of
monomodal logic, so let us go there now, and show the trouble created for
‘semantics without toil’ by a phenomenon that is particularly well known in
that arena: Halldén incompleteness. (Despite the name, and like Post com-
pleteness and incompleteness, Halldén completeness and incompleteness are
syntactical notions, their semantic repercussions notwithstanding – though
the repercussions envisaged are very different for Kripke semantics than they
are for the kind of semantic interpretation Halldén has in mind: see Section
6.17)

17(Prior 1957, 54), referring to his proposed modal logic Q, writes “Dr. Alan Ross Anderson has pointed
out to me, however, that Q can be shown to be ‘semantically complete’ in the sense of S. Halldén, i.e., it
contains no theses of the form Aαβ in which α and β have no variables in common and yet neither is a thesis
on its own.” (Here Prior is writing Aαβ for α ∨ β.) This “i.e.” is quite misleading. The syntactic property
alluded to here is not what Halldén calls semantic completeness, the latter signifying for him (as usual) a link
between provability and (a suitable notion of) validity, which Halldén argues cannot be forged when there are
provable variable-disjoint disjunctions neither disjunct of which is provable. We will look at this argument in
its original setting in the Postscript below (Section 6), with Section 4 concentrating on its bearing on semantic
completeness à la Brady and Rush.
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4 Halldén completeness and semantic
completeness

Proceeding with the project just outlined, let us begin by recalling the most
widespread contemporary understanding of Halldén completeness for proposi-
tional logic. It applies to logics as sets of formulas – historically, originally to
modal logics (Halldén 1951) – and if we are thinking of logics as consequence
relations, its application depends only on the consequences of the empty set;
it presumes the presence of a disjunction connective with more or less the
expected properties. In terms of consequence relations those properties would
amount to a disjunction A ∨ B having for is consequences those formulas
which are both consequences of A and consequences of B.18 However, as just
remarked, its application to a consequence relation depends only on the con-
sequences of ∅, so we are in effect thinking of logics as sets of formulas and
the elements of such set will be described as provable in the logic.

Definition 4.1 A logic is Halldén complete iff whenever A ∨ B is provable,
and there are no sentence letters appearing in both A and B, then either A
or B is provable.

Remark 4.2 Halldén’s original definition (in (Halldén 1951)) was a little
different, having the additional requirement that each of A,B was constructed
using a single propositional variable, but this is no longer regarded as a useful
demand to build into the definition, though sometimes it is built in with the
aid of a qualification: strongly Halldén complete. (See (Schumm 1993a),
appearing also as the appendix to (Schumm 1993b), and references there for
further discussion.) ◀

Halldén’s idea was that for a plausible notion of validity to coincide with
provability in a logic, the logic would have to be Halldén complete, and though
his argumentation in (Halldén 1951) seems somewhat mysterious today: fur-
ther detail on this front is postponed to Section 6, for after we have seen the
bearing of these issues on Brady and Rush’s discussion. Halldén completeness
has been discussed in connection with classical propositional logic, numerous

18The usual understanding of ⊢’s “having disjunction” would be stronger: that Γ, A ∨ B ⊢ C iff Γ, A ⊢ C
and Γ, B ⊢ C, but for present purposes we do not need to require this for Γ ̸= ∅.
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intermediate logics – though not for those which, like intuitionistic proposi-
tional logic itself, have the disjunction property (understood as per Definition
4.1 except without the condition that A,B have no common sentence letters
– making Halldén completeness an immediate consequence of this property),
modal logics,19 relevant logics (Routley and Meyer 1972, 71), and modal rel-
evant logics (Mares 2003), among others. Here our focus is on (classically
based) modal logics, as Halldén’s was in (Halldén 1951). The parenthetical
“classically based” here reflects the fact that the metalanguage to be used for
reasoning about such propositional logics in homophonic model-theoretic se-
mantics will freely avail itself of the deductive resources of classical predicate
logic, side-stepping the difficulties noted in Section 3. And in fact this reason-
ing will be rather familiar20 from the case of showing that the set of classical
tautologies, is Halldén complete: if neither A nor B is tautologous, so there
are Boolean valuations v, v′ assigning the value F to A,B respectively, then
if A,B have no sentence letter in common we can ‘combine’ v and v′ into a
single Boolean valuation v′′ matching v’s assignments of T, F to the sentence
letters in A and matching v′’s assignments to those in B, and we will then
have v′′(A ∨B) = F , revealing this disjunction not to be tautologous.

For the case of interest to us here we have interpretations in place of
valuations and we have an additional 1-ary connective □ to contend with;
this notation is reasonable in view of the traditional very generous definition
of what a (mono)modal logic is, though here we extend the idea from logics
as sets of formulas to logics as consequence relations.21 Concerning □, our
semantic account tells us (as in Example 2.1), that for all interpretations I
and all formulas A:

19 (Chagrov and Zakharyaschev 1991, 201–206) and (Chagrov and Zakharyaschev 1993, 990–997) provide
a wealth of information on Halldén completeness among intermediate as well as modal logics. One historical
correction: on p. 201 of (Chagrov and Zakharyaschev 1991) we read that the existence of Halldén incomplete
intermediate logics was pointed out in (Halldén 1951). The only intermediate logic in the sense in which
Chagrov and Zakharyaschev use the phrase – i.e. for (consistent) superintuitionistic logics – mentioned by
Halldén is intuitionistic propositional logic itself, concerning which he makes the point about the disjunction
property made in the text here. The authors have perhaps been influenced by the wording of Theorem 2 in
(Halldén 1951), with its reference to “S1, S3, or any intermediate calculus,” in which it is clear from the

context that the last three words mean any logic (‘calculus’) between S1 and S3.
20Given, to cite only discussions already in our bibliography, on the opening page of (Mares 2003), and on

p. 862 of (Humberstone 2011).
21In this setting we can think of ⊢ as a modal logic if ⊢ is a substitution-invariant extension in an expansion

(by the addition of □) of the consequence relation of classical propositional logic, formulated with some
functionally complete stock of connectives.
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I |= □A ⇔ □(I |= A) (□/□)

Here we see “⇔” putting in its regular appearance, so to make life simple we
may suppose that the object logic we are currently treating is some Halldén
incomplete (normal) extension of S4, in which case we can take ⇔ as strict
equivalence.22 For definiteness let us pick the logic mentioned in connection
with Schumm in note 22 and give this logic the ad hoc label S for present
purposes, for which purposes nothing about its identity natters beyond its
being a normal Halldén incomplete normal extension of S4.

Lemma 4.3 If p1, . . . , pk are the only sentence letters appearing in the for-
mula A and I, I ′ are interpretations for which we have I |= pi iff I ′ |= pi
(i = 1, . . . , k) then I |= A iff I ′ |= A.

What follows is a relatively informal proof of Lemma 4.3, though in due
course we will write ⇔ in place of “iff” so as to recall the conditions this con-
nective is presumed to satisfy, according to the current consequence relation
⊢S, taken as the local consequence relation associated with our sample logic
S.23 Its metalogical counterpart ⊢S will have to be a corresponding modal pred-
icate logic, since we need the resources of quantification, and for simplicity let

22Normal modal logics (as sets of formulas) are sets of formulas in a language with 1-ary □ and some
functionally complete set of Boolean connectives, closed under Uniform Substitution, necessitation (prefixing
of □) and Modus Ponens, and containing all truth-functional tautologies and the formula □(p → q) → (□p →
□q); modal logics in general are similarly defined but without the condition concerning this last formula or the
condition pertaining to necessitation. The normal extension of a modal logic is the least normal modal logic
extending that logic. The supposition that we are dealing with a Halldén incomplete normal extension of S4
presumes that there are such logics, so for definiteness, we may take an example suggested by (Lemmon 1966,
297), namely the normal extension of S4 by: (p → □♢p) ∨ ♢(□q ∨ □¬q), in which “♢” abbreviates “¬□¬”.
Lemmon’s actual suggestion does not include the word ‘normal’, for which reason a more straightforward
example is the extension of S4.4 – of necessity normal (Segerberg 1975) – by the closely related axiom
□(♢p → □♢p) ∨□(□♢q → ♢□q), given in (Schumm 1969) in response to the question of whether there were
any modal logics strictly between S4 and S5. (For further information, see Humberstone 2016, 417f.) (Schumm
1993b, 202) notes the existence of uncountably many Halldén incomplete extensions of S4, and following up
the reference he gives there shows that we may insert “normal” before “extensions” here. As Lemmon also
mentions, J. C. C. McKinsey had earlier observed that there are no Halldén incomplete extensions of S5, and
indeed had already isolated (McKinsey 1953, 113) a Halldén incomplete logic between S4 and S5. Further
pertinent material can be found in (Schumm 1975).

23The local consequence relation associated with a modal logic when the latter is construed as a set of
formulas is the relation holding between Γ and A when A can be obtained from theorems of the logic and
formulas in Γ by (successive) applications of Modus Ponens. The label is appropriate because semantically
this is a matter of truth at a point in a model, by contrast with global consequence, requiring instead only
preservation of the property of being true throughout a model, a syntactic gloss on which would have to allow
applications not only of Modus Ponens but also of Necessitation.
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us suppose that □ commutes with ∀ according to this consequence relation
(the Barcan equivalences). Evidently the basis case for a proof by induction
on the complexity ( = number of primitive connectives used in the construc-
tion of) A is given by the condition on I, I ′, since in this case A is one of the
pi. So suppose that A is #(A1, . . . , An) for some n-ary connective #. In fact
in the present case we can take n ≤ 2 since we may suppose that our object
language connectives are just, for example ¬, → and □, and for illustrative
purposes let us look at the □ case, since this is the only novelty not present
in the “combine the Boolean valuations” argument recalled above. Thus our
inductive hypothesis is that for a formula A and interpretation I:

I |= A ⇔ I ′ |= A (4.1)

and we want to conclude that

I |= □A ⇔ I ′ |= □A (4.2)

But by (2.2d), (4.1) has as a ⊢-consequence □[I |= A] ⇔ □[I ′ |= A] from
which we get (4.2) via (□/□) (and the replacement properties of ⇔).

Remark 4.4 As the above informal argument shows, the wording of Lemma
4.3 is potentially misleading, especially in view of the usual expectations one
might have on seeing the abbreviation “iff” – in particular as suggesting that
we have here a material biconditional. The point is rather that a suitably gen-
eralized version of (4.2) is a ⊢-consequence, by our metalogical ⊢ S4-extending
consequence relation ⊢ (which in the case of interest below will be ⊢ hi), of
(4.1). It would similarly be potentially confusing to read Lemma 4.3 as saying
that whether an interpretation I verifies a formula A is determined by (or
depends at most on) whether or not it verifies pi for the various pi occurring
in A. That might suggest that if A is constructed from one sentence letter
p alone, say (for simplicity) p, and so as to have a special case of (4.1)–(4.2)
before us, that A is □p and I |= p and as it happens, also I |= □A. Now
suppose we have another interpretation I ′ for which, as with I we also have
I ′ |= p. Are we supposing it follows (in the envisaged metalogic) that since I
and I ′ thus ‘agree’ on p, each verifying it, that I and I ′ must similarly agree
on □p, and thus, since I |= □p, we must have I ′ |= □p? That would be
disastrous since it would make the context □(·) – and indeed all contexts –
left-extensional in the sense of satisfying the condition (here stated for □(·))
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for all formulas B,C and ⊢ sound and complete w.r.t the current semantics:

B,C,□B ⊢ □C (LE)

the terminology here being taken from (Humberstone 2011, 454ff.); the same
goes for the ‘right extensionality’ principle (RE) in play in that discussion.
This would follow if we had B,C ⊢ B ⇔ C, but in general we do not. (Recall
we are taking ⊢ as the local consequence relation of an associated with on
extension of S4 and ⇔ as strict equivalence. It is because the latter is al-
ready in the object language that we have used it in the hypothetical schema
B,C ⊢ B ⇔ C. What really matters is that we do not have this principle in
the metalogic, which would force its validity in the object logic via (□/□).)
This in the relevant sense of ‘agreement’ – the sense in which agreement on
components yields agreement on compounds – that fact that I and I ′ both
verify a formula A both fail to verify A it does not suffice for them to agree
on A: for this we require I |= A ⇔ I ′ |= B. Another way – aside form
misconstruing the “iff”, that is – of falling into this trap would be to adopt
the notation warned against in Remark 1.1, and writing “I(A) = T” in place
of “I |= A”. Then the initially given details of the case above, namely that
I |= p, I ′ |= p, and I |= □A, become I(p) = T , I ′(p) = T and thus that
I(p) = I ′(p), which makes it looks as though I and I ′ cannot but treat p alike,
even as it occurs embedded with the context □(·), and hence that we would
then be committed to I(□p) = I ′(□p). To resist such temptations we have
Frege’s distinction of sense and reference to help, though this is not perhaps
a remedy that readily comes to mind in model-theoretic semantics in which
possible worlds are not being invoked. (When they are, we have for Frege’s
distinction, the Carnapian substitute of the intension/extension distinction,
but the latter assigns a semantic value as the extension of an expression only
relative to a world in a model or interpretation, whereas here we are saying
I(p) = T with no such relativization.) ◀

Since there are no constraints on how interpretations treat sentence letters
(aside from the ill-fated (*) from Section 1), which in the present setting
would not count as a constraint anyway, we can re-run the ‘combination of
valuations’ argument for Halldén completeness in the non-modal case, reprised
above. Since we are just concerned here what is provable outright according
to ⊢S, we refer to the logic as S:
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Proposition 4.5 The logic S is not sound and complete w.r.t. its homophonic
model-theoretic semantics.

Proof. Suppose that S is sound and complete w.r.t. its homophonic model-
theoretic semantics. Take a disjunction A ∨ B whose disjuncts share no sen-
tence letters and for which (i) ⊢S A∨B, (ii) ⊬S A, and (iii) ⊬S B (for example,
the A ∨ B from Schumm mentioned in note 22). In view of (ii) and (iii) and
the supposed completeness of the logic, there are interpretations I, I ′ with
¬I |= A and ¬I ′ |= B. Since A and B have no sentence letters in common,
we may consider an interpretation I ′′ which treats the sentence letters in A
as I does, and those in B as I ′ does, in which case ¬I ′′ |= A and ¬I ′′ |= B,
and then by Lemma 4.3, ¬(I |= A ∨ I |= B), so, finally, ¬I |= A ∨ B, thus
contradicting the supposed soundness of the logic, in view of (i). □

Fixing on a particular modal logic as ⊢S was of course just done for def-
initeness: this argument works for any normal Halldén incomplete extension
of S4, and since soundness is not problematic (as Section 2 aimed to show),
what is really revealed is a tension between the syntactic property of Halldén
incompleteness and the semantic notion of completeness provided by homo-
phonic model theory. One might take, for whatever reason, a dim view, as
Halldén clearly did, of Halldén incomplete logics, but that is not really to
the point here, which was to query the automatic availability claimed for this
semantic approach in the initial quotation from (Brady and Rush 2009).24 In
Section 6 we look more closely at Halldén’s original grounds for dissatisfaction
with the logics – especially C. I. Lewis’s S1, S2, S3 – displaying this syntactic
property: they are strikingly similar for the grounds provided in the proof
of Proposition 4.5 for concluding that S was not amenable to a homophonic
semantic treatment, though Halldén’s point was couched in different terminol-
ogy (‘normal interpretations’: see Section 6), and he may have overestimated
Lewis’s commitment to such an interpretation in claiming that these weaker
logics were semantically intractable by Lewis’s own lights.

For the remainder of this section let us attend to a qualm that might be
raised about excessive hand-waving in the proof of Proposition 4.5: where
precisely do we get the metalogical resources for the crucial ∀∀∃ step? This

24A referee (or expert reader) points out – something I had completely forgotten – that the present consid-
erations are closely connected with those urged in §3.3 of (Williamson 2013) to urge that the set of what are
there called metaphysically universal formulas should constitute a Halldén complete modal logic.
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claims the existence of a suitable I ′′ on the basis of suitably related I, I ′,
whereas we have not spelled out explicitly any principles for a formalized
metatheory which would secure such existential claims. Rather than doing
ourselves to that, however, we shall see, instead, how to sidestep the apparent
need to do so by giving a version of the argument which, though it does not
apply to the S under consideration above, readily finds application among
the normal (as well as non-normal) modal logics. To move in that direction,
we begin by noting a close relative of Halldén incompleteness which has us
temporarily jettisoning our recent classical underpinnings.

This close relative, not usually thought of in the same breath as Halldén
completeness and incompleteness, is the property of consequence relations
called uniformity in (Łoś and Suszko 1958). Not usually – but occasionally:
the connection is made explicit by Shoesmith and Smiley in the works cited
below, where a uniformity-like condition appears under the name of ’cancel-
lation’ which for finitary consequence relations can be taken in the form, with
vbl(·) maps a set of formulas to the set of sentence letters occurring in those
formulas :

If Γ,∆ ⊢ A and vbl(Γ ∪ {A}) ∩ vbl(∆) = ∅, then Γ ⊢ A or else ∆ ⊢ C
for all C.

While this condition needs considerable elaboration to cover the case of ar-
bitrary (i.e., not necessarily finitary) consequence relations, it suffices as it
stands for present purposes as a necessary condition for a consequence rela-
tion to be many-valued in the sense of being determined by a single (logical)
matrix. (The elaborations are given in Shoesmith and Smiley 1971 and had
already been noted by Ryszard Wójcicki as a necessary supplementation to
the treatment in Łoś and Suszko 1958: for the rather complicated details
here, see Wójcicki 1974, and p. 278 of Shoesmith and Smiley 1978.)

To see the connection between the claim that a matrix-determined ⊢ must
satisfy the uniformity/cancellation inset above and the argument that classi-
cal propositional logic is Halldén complete, look at what happens when the
condition is not satisfied for such a ⊢: the matrix evaluations that end up
witnessing the fact that Γ ⊬ A and ∆ ⊬ C, for some C, assign (i) desig-
nated values to the formulas in Γ but an undesignated value to A and (ii)
designated values to the formula in ∆, so since ∆ is variable disjoint from
Γ ∪ {A} these assignments can be combined into a single evaluation showing
that Γ,∆ ⊬ A. (Shoesmith and Smiley 1978, 618f.) go on to explain the
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relationship to Halldén completeness, as standardly understood. (There is
no mention of Halldén completeness in the authors’ Shoesmith and Smiley
1978.) Kracht (1999, 29) boldly redefines Halldén completeness as a property
of consequence relations not making any reference to disjunction – though he
does mention the usual definition later (p. 141) – but instead using a special
case of the inset condition above with Γ = ∅ and ∆ = {B}, and accordingly
announcing (Theorem 1.6.5, p. 30) that all matrix-determined consequence re-
lations are Halldén complete, without the expected further condition that the
operation associated with disjunction in the algebra of the matrix in question
take any pair of undesignated values to an undesignated value.25

Whatever one calls it, this cancellation/uniformity property is enforced,
no less than Halldén completeness stricto sensu is, by the homophonic model-
theoretic semantics, via the same “combine the distinctive features of I and I ′

within a single interpretation I ′′” reasoning (even though, yes, we are heading
towards a case in which we can by-pass this reasoning). The property in ques-
tion is famously not possessed by (Johansson style) minimal logic, for whose
consequence relation ⊢ML we have for example p,¬p ⊢ML ¬q, even though
p,¬p ⊬ML r (and thus we do not have p,¬p ⊢ML C for all C) and ⊬ML ¬q. The
violation is even more dramatic if we take a formulation with ⊥ as primitive
(in terms of which ¬A would be defined as A → ⊥), but about which ⊢ML
says nothing it does not say about all formulas. Then there are no shared
sentence letters on the left and the right in the claim that ⊥ ⊢ML ⊥ since
there are no sentence letters at all, yet we have neither ⊢ML ⊥ nor: for all C,
⊥ ⊢ML C. In this case, much discussed in (Shoesmith and Smiley 1978), no
determining matrix is available because making the value corresponding to the
nullary connective ⊥ designated would conflict with the former and making it
undesignated would conflict with the latter. The appropriate incarnation of
the general (#/#) form for the case of # as ⊥ in homophonic model theory

25This condition was part of the definition of a normal matrix used in (Kripke 1965), in which one reads,
concerning the property of Halldén incompleteness, that “Halldén essentially showed that no system with
his property can possess a normal characteristic matrix.” (Kripke refers the reader to Church’s definition of
normal matrices or, as Church calls them – following Carnap – normal interpretations: (Church 1956, 117);
Halldén has his own definition of ‘normal interpretation’, quoted in Section 6 below. Normality of matrices
in this sense has nothing to do with normality of modal logics, whether in Kripke’s originally defined sense –
requiring the provability of all formulas of the form □A → A – or in the subsequently adopted sense explained
in note 22, which omitted this requirement. The former pertains to the behaviour of the non-modal vocabulary
and the latter – essentially – to that of the modal vocabulary.) Note that the algebras used to define the
logics on which (Bacon 2013) focuses do not satisfy the condition: the top (and sole designated) element 1 is
typically a lattice join of elements distinct from 1.
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would then be:
[ I |= ⊥ ] ⇔ ⊥ (⊥/⊥)

in which ⇔ can be taken as ↔, recalling that the {∧,∨,→,↔}-fragment
of minimal logic coincides with that of intuitionistic logic. At this point we
observe that “I” does not appear free on the right of (⊥/⊥), so we have the
consequence that for all interpretations I, I ′:

[ I |= ⊥ ] ⇔ [ I ′ |= ⊥ ] (4.3)

from which we might be tempted to conclude that either all interpretations
verify ⊥, in which case we should have ⊢ML ⊥, or none do, in which case we
should have ⊥ ⊢ML C for all C, so since neither of these alternatives obtains,
minimal logic presents another example in which we do not have soundness
and completeness w.r.t. the homophonic model-theoretic semantics. But this
would be to forget that the metalogical reasoning is supposed to be as licensed
by, for the present case, ⊢ ML, and this inference from (4.3) to a disjunction
of universal claims is not thus licensed. This was exactly the kind of nuisance
stressed in the previous section occasioned by working not only on but in a
logic weaker than one is accustomed to, prompting us to consider classically
based ventures.

Undeterred, however, we proceed as with Halldén completeness proper, and
shift to a classically based modal logic, so that in the metalogic all of classical
predicate logic is available for exploitation.26 More specifically, let us pass
to the smallest normal modal consequence relation ⊢K (the local consequence
relation, in the sense of note 23, associated with the smallest normal modal
logic, K27), since in this logic the ‘pure’ (‘letterless’) formula □⊥ enjoys the
same status – neither provable nor refutable – as ⊥ itself does in minimal
logic.28 There is a slight complication in that there is no endogenous ⇔, so
⊢ K will have to take this on as a new connective, p ⇔ q being given the
powers it would have had it been defined infinitarily as the conjunction of all

26Considered as a consequence relation this means that require not only that we have an extension (in a
monomodal language) of the consequence relation of classical predicate logic but that it should satisfy also the
usual conditional classicality conditions on consequence relations – such as →-classicality and ∨-classicality
as they are called in (Humberstone 2011).

27“K”, by tradition, for Kripke here – no connection with the K/(K) of BCK.
28In the terminology of (Kracht 1999, 88), □⊥ is a non-trivial constant (of K); see also the top of p. 142

there, down to and including Proposition 3.7.7 (something mention by name as the online version of the book
is differently paginated).
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the □n(p ↔ q) (n ≥ 0). Invoking both (⊥/⊥) and (□/□), we get

[ I |= □⊥ ] ⇔ □⊥ (4.4)

Corresponding to (4.3) above, and for the same reasons, we have (for all I, I ′):

[ I |= □⊥ ] ⇔ [ I ′ |= □⊥ ] (4.5)

and hence, first weakening the ⇔ in (4.5) to ↔, this gives us a premiss from
which we may conclude:

∀I(I |= □⊥) ∨ ∀I(¬I |= □⊥), (4.6)

since our reasoning is now entirely classical. For the record then, we have,
written in the same style as Prop. 4.5:

Proposition 4.6 The logic K is not sound and complete w.r.t. its homophonic
model-theoretic semantics.

Proof. According to (4.6), one or other disjunct of the object language dis-
junction □⊥ ∨ ¬□⊥ is valid, but since neither is provable in K, we have a
failure of semantic completeness. □

The main point of interest here, as foreshadowed earlier, is that we did not
need – as we did for the proof pf Proposition 4.5 – the step that combined one I
with a second I ′, occasioned by the invalidity of the disjuncts, into a single I ′′,
because the r.h.s. of (4.4) does not contain “I”, making it what it says about
its l.h.s. independent of any particular interpretation (4.5). Note that in mov-
ing from minimal logic into classically based modal logic to illustrate problems
coming from the uniformity/cancellation effects of homophonic model theory
we have got enough classicality of board for Kracht’s redefined version of
Halldén completeness, a special case of uniformity/cancellation, to coincide
with Halldén completeness. In the present instance we have the ‘Halldén un-
reasonable’ disjunction □⊥ ∨ ¬□⊥ K-provable without either disjunct’s being
provable, despite their not sharing a sentence letter.29

Digression. Although our concern here is with propositional logics (as ob-
ject logics) since we are following the lead of Brady and Rush, and it is not

29If you want to see some sentence letters instead of “⊥” and make this same point, then take distinct
letters, p and q, and replace the first “⊥” with “p ∧ ¬p” and the second with “q ∧ ¬q”.
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quite clear what they would have in mind as a similarly toil-free treatment
in the case of predicate logics, it is perhaps worth recalling that (for conve-
nience again) classical predicate logic with identity provides us with sentences
constructed (like □⊥ in the example just considered) without the aid of non-
logical vocabulary, such as ∃x∃y(x ̸= y) – call this “⊭” – which the logic does
not decide (does not prove or refute) and thus with ⊭∨ ¬⊭ we have a Halldén
unreasonable disjunction one of whose disjuncts must be true on all interpre-
tations despite its unprovability – at least if the treatment of predicate logic is
close to that of propositional logic. To increase the closeness, we could remove
“=” from the language, and even the quantifiers as well, and take ⊭ as prim-
itive, as the sole frill added to zero-order logic, this sentential constant being
interpreted in conventional model-theoretic terms as true in structures with
a universe of two or more elements. (Suitable conditions on ⊢ are then given
by the unconditional requirement (i): A(t),¬A(u) ⊢ ⊭, where A(t) and A(u)
are any formulas differing in that one has t at one or more positions in which
the other has u, and the conditional requirement (ii): if Γ, F t,¬Fu ⊢ C, then
Γ,⊭ ⊢ C, where the monadic predicate letter F and the terms t, u do not
occur in the formulas of Γ ∪ {C}.) End of Digression.

Returning to propositional logics themselves, let us note that Proposition
4.6 is just one application of something more general. Obviously we get a
similar result for K4, K5, and in general for all the normal modal logics that
do not extend KD or KVer, where the latter is the least (normal) modal logic
containing □⊥, since among normal modal logics a logic decides all pure for-
mulas (i.e., proves or refutes all formulas constructed without sentence letters)
if and only if it proves ♢⊤ or its negation. But this consideration, and a proof
as for Proposition 4.6 above, extend outside of the sphere of normal modal
logics, as we may record here:

Proposition 4.7 No modal logic which fails to decide all pure formulas is
sound and complete w.r.t. its homophonic model-theoretic semantics.
Proof. Suppose we have a modal logic which does not decide the pure formula
A. Then reasoning as in the proof of Prop. 4.6 but with (4.7) in place of (4.6):

∀I(I |= A) ∨ ∀I(¬I |= A), (4.7)

we have one or other of ¬A valid but ex hypothesi not provable in the logic
in question. □
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Remark 4.8 As it bears on non-normal modal logics which are not exten-
sions of the smallest congruential modal logic, Proposition 4.7 is sensitive to
the choice of the underlying non-modal logic, since if there are no nullary con-
nectives (⊤,⊥) in that language there are no pure formulas available and the
equivalences exploited in note 29 is not available to simulate such formulas.
As (Makinson 1973) points out, the smallest modal logic in the language with
no pure formulas is Halldén complete, while the smallest such logic in the lan-
guage providing such formulas is Halldén incomplete. (This gloss on (Makin-
son 1973) makes use of the characterization given in Proposition 6.7(iii), and
of the ‘congruential’ terminology from (Makinson 1971) to apply to modal
logics – as sets of formulas – containing □A ↔ □B whenever they contain
A ↔ B.) ◀

We mention one interesting application of Proposition 4.7 among the non-
normal modal logics for which the issue raised in Remark 4.8 does not arise:

Example 4.9 (Irvine 2013) extols the virtues of S7 with part of the informal
motivation coming from a distaste for Halldén incompleteness, the Abstract
heading the paper beginning:

Following Halldén, we define S7 as the system generated by the
addition of ♢♢p to S3. Initial motivation for the extension comes
from Halldén’s paradox. In addition to resolving the paradox,
the resulting system generates a helpful framework for comparing
classical propositional logic [with various alternative (non-modal)
logics].

Similarly on p. 525 we read:

Initial motivation for systems such as S7 thus lay in the fact that
S1–S3 have a certain kind of incompleteness, namely that they
contain theorems of the form α ∨ β, such that α and β have no
propositional variable in common and yet neither α nor β is a
theorem.

And on the following page, noting that one of the disjuncts of some familiar
disjunctions used to illustrate Halldén incompleteness extends S3 to S4 and
the other to S7 (cf. Proposition 6.7(iii) in our Postscript), Irvine writes:

The resulting systems are, respectively, S4 and S7. In either case
Halldén’s paradox will be resolved.
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The talk of paradox in this connection derives from the discussion in (Hughes
and Cresswell 1968, 268ff.) where the existence of Halldén incomplete modal
logics is described as something that “would initially seem strange” and then
as seeming “paradoxical at the very least” (both on p. 268), and then (p. 269)
they describe Halldén complete logics as those for which the paradox will not
arise. It is clear from Hughes and Cresswell’s overall discussion, however,
they do not wish to commit themselves to finding Halldén incompleteness
paradoxical, but rather as reflecting neutrality as between two ways of settling
a question: which disjunct to endorse (of a disjunction witnessing Halldén
incompleteness). See again the Postscript to the present paper. Irvine appears
to be simply assuming that because for the Halldén incomplete S3 we have S3
= S4 ∩ S7, S4 and S7 are themselves bound to be Halldén complete. While
this was long known to be correct for S4 (Theorem 2 in McKinsey 1953), it
was observed not to be the case for S7 in §4 of (Shukla 1972) (and, in the
same year, in (Pledger 1972), final paragraph), which rather undermines at
least this aspect of Irvine’s case for S7. Shukla’s observation can be put in
terms of Proposition 4.7 above by noting that S7 does not decide the pure
formula □♢♢⊥ and is accordingly Halldén incomplete. (Adding that formula
as a new axiom gives the logic S8.) ◀

It would be interesting to know in general terms which such logics fall
outside of the range for which a homophonic model theory provides a no-
tion of validity (or semantic consequence) matching provability (or syntactic
consequence) according to that logic. Do such cases, for instance, simply
exhibit Halldén incompleteness or variations on that theme (including here
non-uniformity)?30 What has been suggested in this section is simply that
some logics do lie outside that range, Brady and Rush’s claims to the con-
trary notwithstanding. I say “suggested” rather than “shown” because there
may be room for manoeuvre, and some tricky issues arise. Let us have a glance
at them.

30Not that this has anything to do with uniformity, though because of potential confusion here that term is
not optimal, let us notice here that often logics are proposed which are not closed under uniform substitution
– a fair sample can be found at the top of p. 192 in (Humberstone 2011) – but while these would be obviously
outside the range, they are also not in the spirit of Brady and Rush’s discussion, whence their exclusion from
our concern here, back in note 44.
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5 Possible reactions

Here we consider briefly three possible responses to the findings of the preced-
ing section. A first reaction might be to dismiss Halldén incomplete logics as
marginal exceptions to the essentially correct claim of Brady and Rush that
the semantical approach they dismiss as trivial because automatically avail-
able is indeed automatically available in all but these marginal cases. In reply
to this, we recall from the end of Section 4 that the extent of its unavailability
has by no means been shown to arise only in the fact of Halldén incomplete-
ness – its extent was left as an open problem – and further, that Halldén
incompleteness is by no means to be set aside as a marginal phenomenon.
Our postscript (Section 6) aims to substantiate that reply with illustrations
of how the phenomenon arises.

A second response which might be anticipated, along the lines of that men-
tioned in note 9, is that the discussion above completely ignores the contrast
between the interpretational and the underlying metalogic which is stressed
in some of the material cited in Section 2 above. Guilty as charged. But even
if such a distinction can be made out and shown to salvage the suggestion
of triviality or guaranteed success for the position thus bolstered, consider-
able interest surely still attaches to the homophonic model-theoretic project
as discussed here with a straightforward undifferentiated metalogic. If some
other authors – Rady and Brush, as it might be – were to make the claim
that soundness and completeness were trivially assured w.r.t. such a seman-
tics, it would be worthwhile to explore the areas in which such a claim was an
overstatement, and to delimit the precise range of logics – not that any such
general result has been offered here – for which the claim would be correct.

A third possible reaction will be described here, on the ultimate success
of which no definitive verdict will be offered. The discussion will provide an
occasion to revisit the Brady and Rush’s claim of triviality for proofs of se-
mantic completeness w.r.t. the homophonic semantics, but it will also lead
us into some conceptually challenging terrain. Beginning with the triviality
claim, we recall once more that after describing the soundness and complete-
ness theorems (in this setting) as trivial, Brady and Rush say:

For completeness, for a nontheorem N , I(N) = T would fail as a
result of the failure of the corresponding metalogical law, applied
to totally unconstrained assignments to its variables.
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Contrapositively, if we may permit ourselves such a reformulation (cf. Section
3), suppose we are dealing with an unspecified logic, ⊢, about which we ac-
cordingly do not know whether a formula, say for the sake of example the
formula p → ((p → q) → q), is provable, but we are told that according to
the homophonic model-theoretic semantics this formula is valid. This means
that, where Σ contains (at least) the set of (universally quantified) (#/#)
conditions, we have

Σ ⊢ ∀I (I |= p → (I |= p → I |= q) → I |= q).

What follows the “∀I” on the right of the “⊢” here is indeed an instance of,
in Brady and Rush’s words “the corresponding metalogical law”, namely, in
schematic form, φ → ((φ → ψ) → ψ), so the current thought is that Brady
and Rush may be taking it our specific instance of this schema could only
be a ⊢-consequence of Σ if all instances of this schema were provable in the
metalogic. Then, the thought continues, since the metalogic is supposed to
coincide, in its propositional fragment, with the object logic, that could only
happen if all instances of the corresponding object-linguistic schema were ⊢
consequences of ∅, i.e., if ⊢ p → ((p → q) → q). Thus we reason from the
validity of our formula to its provability.31

The reasoning is rather sketchy – Σ drops out of the story somewhat myste-
riously – but let us suppose that something along these lines is correct. What
would an all-gaps-filled explicit version of this argument show? Abbreviating
the claim that for all I, I |= A (“A is valid”) to “Val(A)” it begins with the
hypothesis that Σ ⊢ Val(A), which asserts the provability of Val(A) in the
metatheory with axioms Σ and logic ⊢. For brevity we could read this as
saying that A is provably valid. So the envisaged perfecting of the argument

31On the occasion mentioned in the acknowledgments at the end of this paper, Brady confirmed that this
was indeed what they had in mind. On the same occasion he made a response distinct from the three canvassed
here, namely that mentioned and dismissed immediately after Remark 1.1 above. In a later communication
circulated to those who had been in attendance, Brady explained indicated that, on reflection he would like to
observe that “the key to toil-less semantics lies in the deductive presentation of semantics, i.e. free semantics
(see (Brady 2010)), which was set up in natural deduction, free of disjunctive or existential instantiation. The
toil in semantics is in satisfying the requirements of formula induction in standard model-theoretic semantics,
e.g. primeness, negation-completeness, existential instantiation. So, our point about the soundness and
completeness being toil-less when the object and meta-logics are the same still applies to free semantics.
Clearly, in the case of classical logic being used in both object and meta-language, the toil is associated with
establishing negation-completeness and the existence of existential witnesses. The same sorts of things would
apply for weaker logics, employed in both the object and meta-languages.” I include this response here, not
because I understand it – or (Brady 2010), for that matter – but for the possible edification of anyone who
might.
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sketched above would show that any provably valid formula is provable – where
the latter reference is to object-logical provability. (To parallel the semantic
characterization, one could equally well say here “is provably provable”.) This
would be something that could be meant by semantic completeness, and it
is not threatened by the Halldén material in Section 4. The argument there
was that according to the homophonic semantics we have formulas A and B
one of which was true on all interpretations, but whichever it was, it wasn’t
provable, so there is a failure of semantic completeness. But this is not a fail-
ure of semantic completeness in the new sense just isolated. If we imagine the
reasoning fully formalized, with Σ beefed up (as necessary) so as to support
the argument to the existence of a valuation I ′′ suitably mimicking I on A
and I ′ on B, then the best we can hope for is that:

Σ ⊢ Val(A) ∨ Val(B),

which is to say we do not have Σ ⊢ Val(A) or Σ ⊢ Val(B). This means we do
not find ourselves with a counterexample to the claim of completeness in the
modified sense: we have not given any reason to think that some provably valid
formula is unprovable in the object logic. Whether a response along these lines
can succeed is unclear. The idea that the modal logic K, for example, is sound
and complete w.r.t. a semantic theory that tells us that one of □⊤,¬□⊤ is
valid but, does tell us which one – that’s an idea that would take some getting
used to.

6 Postscript: Halldén completeness, then
and now

This Postscript assumes familiarity with the Kripke semantics for normal
modal logics, and in particular with the inductive definition of truth at a
point in a model, taken as a triple ⟨W,R, V ⟩ (on the frame ⟨W,R⟩). While
we begin in Example 6.1 with consequence relations, when discussing modal
logics we are thinking of them as sets of formulas; definitions of modal logic
and normal modal logic in this setting were provided in note 22. For expos-
itory convenience the focus, below, is mainly on normal modal logics. The
first time Halldén completeness arose in the literature (Halldén 1951), it was
as a feature of non-normal modal logics – in particular, of C. I. Lewis’s S1,

Organon F 26 (3) 2019: 340–404



Semantics without Toil? 379

S2, S3 – and there is no substitute, if one wants a clear-headed summary of
the early literature on this topic, for pp. 268–272 of (Hughes and Cresswell
1968), perhaps supplemented, for appropriate ‘period flavour’, by a perusal
of Chapter 6 and Appendices II and III of (Lewis and Langford 1959).32 A
particularly attractive feature of their treatment is the idea of a Halldén in-
complete logic such as S3 as being “neutral between two conflicting views”
(Hughes and Cresswell 1968, 270), in this case those embodied in the two
stronger logics S7 (again non-normal) and S4 (normal); the formal underpin-
ning of this feature is given in Proposition 6.7(iii) below (a well-known result).
From this perspective, taken up in (Humberstone 2007b), aspects of which are
echoed below, the arguably unfavourable (‘something missing’) connotations
of the ‘Halldén incomplete’ terminology are misleading:33 neutral on this or
that issue may be just what one wants to remain. (The issue in (Humber-
stone 2007b) was realism about non-actual worlds, with an attempt give the
‘modal agnosticism’ of (Divers 2006) a formal embodiment.) This – perhaps
rather superficial – conception of neutrality should not be taken to represent
an endorsement of the ‘neutral arbiter’ status of logical work criticized in a
paper mentioned in passing in Section 1 above (as well as in the longer note
on that ‘On Dummett and others’ in the Appendix), (Williamson 2014), in
which Williamson warms his readers up with the following (p. 212):

A natural metametaphysical hope is that logic should be able to
act as a neutral arbiter of metaphysical disputes, at least as a
framework on which all parties can agree for eliciting the conse-
quences of the rival metaphysical theories. An obvious problem for
this hope is the proliferation of alternative logics, many of them
motivated by metaphysical considerations.

The idea of neutrality as embodied in Halldén incompleteness was not the
32The same authors’ (Hughes and Cresswell 1996), sometimes mistakenly thought to have supplanted the

original, contains no discussion of this topic. A later channeling of the less tentative side of Lewis can be found
in (Shukla 1972), mentioned in Example 4.9. In Shukla’s terminology none of S1, S2, S3, their provenance
notwithstanding, counts as a ‘Lewis system proper’.

33To say nothing about the apparently hostile alternative ‘Halldén unreasonable’ terminology, used through-
out our discussion with no such criticism intended, but simply as a reminder honouring (McKinsey 1953),
though here we apply it to the disjunctions witnessing the Halldén incompleteness of a logic rather than, as
McKinsey did, to the logics themselves. And, perhaps distancing himself from the suggestion that anything
was amiss, recall that McKinsey said “unreasonable in the sense of Halldén” (though “according to” would
have been more accurate than “in the sense of”). More on the business of thinking something is wrong with
Halldén incompleteness can be found in (Schumm 1993b).
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idea of logic as arbitrating between competing views but rather as a way of
refraining from taking sides. The discussion to follow emphasizes themes from
(Humberstone 2007b), (Humberstone 2011) – esp. pp. 862–872 – and to

a lesser extent, (Humberstone 2016) (see the index entries under ‘Halldén
completeness’). The ‘then and now’ part of the title is there to record the fact
that we will have at least get round to looking at Halldén’s own discussion
from a contemporary vantage point; the intention to supplement rather than
supplant the useful retrospective provided by (Schumm 1993b). But first, an
example showing that even for logics, conceived as consequence relations (with
disjunction behaving ∨-classically), the intersection of two proper extensions
does not yield Halldén incompleteness.

Example 6.1 Let us return to the case of minimal logic in and the neutrality
of this logic – identified with the consequence relation ⊢ML of Section 4 – over
the interpretation of ⊥ as a truth or a falsehood. One might, accordingly,
think that ⊢ML is the intersection of two of its proper extensions, one deciding
the matter one way, by having a theorem ⊥ and the other deciding it the
other, by having (for all A) ⊥ → A as a theorem. This thought is not quite
right, since then the ‘Halldén-unreasonable’ disjunction ⊥∨(⊥ → q) would be
provable in each of them and yet ⊬ML ⊥ ∨ (⊥ → q) – since ⊢ML does after all
enjoy the disjunction property. In this setting, as one gathers from (Hawranek
1987) (with (Hawranek and Zygmunt 1981) for additional background),34 we
have to think, instead, in terms of the uniformity or cancellation condition,
addressing the consequence relation involved in all its splendour, and not just
the consequences of ∅ according to it. The first thought got one of the two
extensions of ⊢ML right: the smallest extension ⊢ of ⊢ML such that ⊢ ⊥. But
the other candidate, it got wrong: what was needed was, rather, the least
extension ⊢ of ⊢ML such that for all formulas C, we have ⊥ ⊢ C. Abbreviating
each of Verum and Falsum to its first three letters, let us call these two
consequence relations ⊢MLVER and ⊢MLFAL, respectively. The less obvious part
of the claim that ⊢ML = ⊢MLVER ∩ ⊢MLFAL is the ⊇-direction, and for a proof –
which will be given using classical metalogical reasoning – we make use of the

34A typo in (Hawranek 1987) to watch out for: schema 9 at the base of p. 284 should be ⊥ → A rather than
A → ⊥. The explanation is perhaps that one is used to writing the latter as the definition of ¬A. The same
confusion but in the opposite direction – writing the axiom when attempting to give the definition (in Polish
notation this time) – can be found in line 10 of the first page of (Sobociński 1964), when putatively quoting
Prior. Less likely to cause confusion: in the middle of p. 287, for “pseudo-relatively lattice” read “relatively
pseudo-complemented lattice”.

Organon F 26 (3) 2019: 340–404



Semantics without Toil? 381

(easily established) lemma that for any Γ ∪ {A}:

Γ ⊢MLVER A iff Γ,⊥ ⊢ML A.

Now, contrapositively, we need to show that if Γ ⊬ML A then either Γ ⊬MLVER A
or Γ ⊬MLFAL A. Invoking the lemma above, this amounts to showing that
Γ ⊬ML A then either Γ,⊥ ⊬ML A or Γ ⊬MLFAL A. This we show by assuming (1)
Γ ⊬ML A and (2) Γ,⊥ ⊢ML A, and inferring from (1) and (2) that Γ ⊬MLFAL A.
In view of (1), by a Lindenbaum construction we can extend Γ to some Γ+

with the property that Γ+ ⊬ML A while for any proper superset ∆ of Γ+, we
have ∆ ⊢ML A. In view of (2), ⊥ /∈ Γ+, which implies that Γ+ ⊬MLFAL A, since
Γ+ is accordingly closed under the transition from ⊥ to arbitrary C. Now
Γ+ ⊇ Γ, so, as we wanted, Γ ⊬MLFAL A. As (Hawranek 1987) points out, each
of (what we are calling) ⊢MLVER and ⊢MLFAL is determined by a single matrix, in
which ⊥ is assigned a (indeed the) designated element and an undesignated
element respectively, meaning that ⊢ML is determined by a pair of matrices
and accordingly (since it is not determined by any single matrix) has ‘degree of
complexity’ 2. From the perspective of Kripke-style model theory (Segerberg
1968) we can work with pointed frames ⟨U,≤, Q, u⟩ in which u ∈ U and
Q ⊆ U is upward closed under the partial ordering ≤ of U , an order w.r.t.
which u is a least element. In any model on such a frame, Q provides the
set of points at which ⊥ counts as true (and the model provides for each
propositional variable a similarly ≤-closed truth-set, the connectives ∧,∨,→
being treated as per the Kripke semantics for intuitionistic logic). A is a
semantic consequence of Γ relative to a class of such frames just in case in any
model on one of those frames, if every formula in Γ is true at the distinguished
point u in the model then so is A. Then Γ ⊢ML A just in case A is a semantic
consequence of Γ relative to the class of all frames, Γ ⊢MLVER A just in case A
is a semantic consequence of Γ relative to the class of all frames ⟨U,≤, Q, u⟩
in which u ∈ Q, and Γ ⊢MLFAL A just in case A is a semantic consequence of Γ
relative to the class of all frames ⟨U,≤, Q, u⟩ in which u /∈ Q. It is only this
last case which is not covered in (Segerberg 1968), where logics are taken as
(certain) sets of formulas rather than as consequence relations, and the set of
(as we would put it) ⊢ML-consequences of the empty set is referred to as J.
The closest approximation to the ⊢MLFAL case covered in (Segerberg 1968) is
that of intuitionistic logic, in which the corresponding frame condition is that
Q = ∅, giving us, by contrast with the case of ⊢MLFAL, ⊥ → A (for all A)
as a consequence of the empty set rather than just A as a consequence of ⊥
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(i.e., of {⊥}). As this underlines for us, ⊢MLFAL does not have the ‘Deduction
Theorem’ property. In fact, by strengthening the above condition “u /∈ Q” to
Q = U ∖ {u}, we get an extension of Minimal Logic in which if ¬A is defined
as A → ⊥ we have ⊢ A ∨ ¬A for all A: see (Humberstone 2006, 64f.). (In
fact ⊥, so interpreted is written as Ω and ¬ as ¬Ω so that we can have this
new constant alongside a ‘nowhere true’ constant ⊥ and an (A → ⊥)-style
negation – all of which means we have an extension, in an expanded language,
of intuitionistic rather than just minimal logic.) ◀

Example 6.1 invites us to draw a couple of morals. The first is the main
intention of the example, namely that the focus on Halldén incompleteness of
a logic as a reflection of neutrality between extensions works well in classi-
cally based modal logics but is not all-purpose indicator of a logic’s being the
intersection of two of its proper extensions in this way, since minimal logic is
such an intersection but is not Halldén incomplete by the disjunction property
argument at the start of Example 6.1. (Similar considerations arise in (Miura
1966).)

Modal logics abound in which provability does indeed coincide with a per-
fectly respectable notion of validity – validity over this or that class of Kripke
frames – despite these logics being Halldén incomplete, which Halldén ex-
pected would rule out this possibility. But he was writing in advance of the
development of the Kripke semantics and we will revisit his original qualms
after talking about, in particular normal modal logics, with that semantics in
mind.

Definition 1 of (Halldén 1951, 127) defines a logic, taken as a set of for-
mulas, to be “complete with respect to an interpretation i”, if and only if
that set coincides with the set of formulas which “according to i, express true
propositions”, but does not define what an interpretation or a proposition is
or what it is to express a proposition according to an interpretation, though
from Definition 2, it seems that propositions can be identified either with or
via (first-order?) predicate-logical formulas. The interpretations i in play
are evidently not to be confused with interpretations I of the kind in play in
our discussion of Brady and Rush. In giving Halldén’s Definition 2 below, I
have replaced his “(x) � fx” notation with “∀x(Fx)” (etc.). This Definition
2, quoted along with a remark on C. I. Lewis, declares an interpretation i to
be a normal interpretation – cf. note 25 – of a logic C (construed a set of
formulas), if and only if:
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for all C -formulas P and Q which are such, that (1) Each con-
tains only one variable, (2) They have no variable in common, it
holds that some monadic functions F and G, and some dyadic
function H are such that (3) P expresses the proposition ∀x(Fx),
and Q expresses ∀y(Gy), (4) P ∨Q expresses ∀x∀yH(Fx,Gy), (5)
If ∀x∀y(H(Fx,Gy)) is true, then either ∀x(Fx), or ∀y(Gy) is true.

It can immediately be seen that Lewis’s own interpretation
of the Lewis calculi is a normal interpretation of them. That
conditions (3) and (4) are fulfilled is trivial. That (5) is ful-
filled partly depends upon the fact that the interpretation assigned
to P ∨ Q (. . . ) permits the inference from ∀x∀y(Fx ∨ Gy) to
∀x(Fx) ∨ ∀y(Gy), when F and G contain no free variables.

Now one may well be puzzled by all these universal quantifiers appearing
out of thin air, and think vaguely that they are quantifying over points in a
Kripke model – but of course such models had no currency when (Halldén
1951) was published. From the point of the Kripke semantics – and indeed
from any semantic point of view – the talk of interpreting modal formulas in
this way seems to stand in need of a clarification as to whether the interpre-
tation is intended to march in step with the truth of the modal formula or
with its validity. From the specifically Kripke-semantic perspective this con-
trast cross-cuts another of obvious relevance: whether we are speaking locally
(truth vs. validity at a point – as explained before Definition 6.2 below or
globally (truth throughout a model vs. validity on a frame). At this junc-
ture we can do no better than display Schumm’s discussion of the implicit
“combination of assignments” here (from (Schumm 1993b, 198)); here α and
β are the disjuncts of a candidate Halldén-unreasonable disjunction and the
square-bracketed insertion is an clarificatory addition:

Now suppose neither α nor β is valid, where α and β share no vari-
ables. This means only that there are worlds (possibly different)
in frames (possibly different) at which α and β can be made false
(possibly under different variable assignments). There is no guar-
antee, nor any evident reason why there should be, that there will
be a single world in a single frame at which α and β can both be
made false [at the same point] under the same variable assignment,
which is what it would take for α ∨ β to lack validity.
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The reasoning here commented on is a contraposed version of that from
the quotation from Halldén, so Schumm is suggesting that what Halldén’s
universal quantifiers are ranging over are potential assignments to the propo-
sitional variables or sentence letters, and what Schumm is emphasizing is a
possibility provided by the Kripke semantics and required for the semantic
description of modal logics in general – though in elaborating the below, we
concentrate on normal modal logics for simplicity – is that these assignments
themselves are sets of points (or world) which may differ in their logical prop-
erties. To spell out the kind of heterogeneity involved here we need first to
define the notion used above, of validity at a point: a formula is valid at a
point in a frame when it is true at that point on any model on the frame.35

This notion of a valuation V is of the assignment to all the sentence let-
ters at once of subsets of the universe W of a frame ⟨W,R⟩ to obtain a model
⟨W,R, V ⟩ on that frame, whereas the passage from Halldén handles the effects
of such a valuation piecemeal, universally quantifying over the assignment to
this (propositional) variable and then to that variable,. . . , and of course he
is not specifically thinking of the objects assigned as sets of points in some
frame (or model structure, as Kripke used to put it). We can think of the
remarks quoted from Schumm above as doing two things. In the first place,
it tells us that a more suggestive notation than Halldén’s might involve writ-
ing ∀p and ∀q rather ∀x and ∀y (though Halldén did not actually use the
“∀” notation) with what look like familiar individual variables. In fact, ap-
parently independently of Halldén, though a few years later, Jerzy Łoś took
worked with the corresponding notion in first-order theories – variously called
O-completeness or quasi-completeness – where it is individual variables that
are involved.36 The second thing the passage from Schumm does is alert us
to the fact that the set of formulas valid at any given point in a Kripke frame
is indeed Halldén complete,37 and, if we were so inclined, we could then par-

35We speak of truth when particular valuations – expanding frames to models – are at issue, and of validity
when universally quantifying away the reference to such valuations.

36See (Łoś 1955), (Łoś and Suszko 1955); Suszko remarks on the relation to Halldén in later publications,
such as (Suszko 1971) and (Suszko 1975). One need not consider non-logical theories to find failures of
‘quasi-completeness’: consider the open formula, free variables having the generality interpretation ∀y(y =
z) ∨ ∃z(z ̸= u) provable in classical predicate logic with identity though neither of the (individual!) variable-
disjoint disjuncts is. One could of course insert the invisible universal quantifiers binding “z” and “u” here,
but this version looks (slightly) more like the Halldén phenomenon in sentential logics without propositional
quantifiers.

37This is something to be stressed in any introduction to the topic – as, for example, in Section 4 of
(Humberstone 2005).
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lay Halldén’s dissatisfaction with modal logics lacking that property into a
Kripke-semantical setting as an argument that frames in which different for-
mulas are valid at different points have no place in explicating modality. But
even if such an argument could be made out, modal logics in the sense cur-
rently under discussion have nothing specifically to do with modality – if that
means: with necessity and possibility – but are a broad generalization aspiring
to encompass many applications (such as the tense logic of ‘ending time’ to
cite a well-known Halldén incomplete case). Even in the case of metaphysical
necessity itself, as mentioned in the opening paragraph of this Postscript, a
case can be made for Halldén incompleteness on hedging-one’s-bets grounds –
more specifically for a failure of global Halldén completeness as defined below
(contrasting in this respect with the tense-logical case just mentioned). This
is the line explored in (Humberstone 2007b), for instance.

Definition 6.2 A frame F = ⟨W,R⟩ is weakly homogeneous if there do not
exist a pair of formulas A,B for which W = WA ∪ WB, where A is valid (in
F) at each point in WA, while B is not valid at every such point, and B is
valid (in F) at each point in WB, while A is not valid at every such point.

Remark 6.3 The word “weakly” is included here because a stronger notion
of homogeneity could be introduced to describe a frame in which all points
validates the same formulas. Stronger still would be the ‘language-free’ no-
tion of a frame ⟨W,R⟩ as homogeneous when for any x, y ∈ W there is some
automorphism of the frame which maps x to y. (This last notion, taken
from first-order model theory, has some currency in the Halldén complete-
ness literature – for example in (van Benthem and Humberstone 1983) and
(Kostrzycka 2015). Incidentally, a variant of Theorem 2 of (van Benthem

and Humberstone 1983), tailored to the Routley–Meyer semantics for relevant
logic, appears independently as Theorem 5.15 of (Routle, Meyer and Brady
1982).) ◀

��������
u

//��������
v

��

Figure 1: A Weakly Homogeneous Frame

Example 6.4 The frame depicted in Figure 1 is weakly homogeneous despite
its points not all validating the same formulas, since p → □p is valid only at
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v. (The same goes for □p → p.) But the weak homogeneity condition is still
satisfied because every formula valid at u (in this frame) is also valid at v. (To
see this consider the p-morphism mapping each of u, v to the sole element of
the one-element reflexive frame.) ◀

Definition 6.5 A class C of frames is weakly homogeneous if there do not
exist a pair of formulas A,B for which C = CA ∪ CB, where A is valid on
each frame in CA while B is not valid on each such frame, and B is valid on
each frame in CB, while A is not valid on each such frame.

Halldén completeness tout court was officially introduced in Definition 4.1;
now we introduce for comparative purposes a strengthening of that notion:38

Definition 6.6 A modal logic (as a set of formulas) is globally Halldén com-
plete if for any pair A,B of formulas, if A,B share no sentence letters and are
such that □mA∨ □nB is provable in the logic for all m,n ≥ 0 (the exponents
indicating iteration), then either A or B is provable in the logic.

Let us write L(C) to denote the modal logic – always a normal modal logic
– determined by the class of frames C, abbreviating “L({F})” to “L(F)”. We
collect some more or less straightforward consequences of the definitions of the
concepts involved in them. Note that a ‘modal logic’ is here understood in the
set-of-formulas sense; part (i) is Corollary 6.41.6 in (Humberstone 2011) and
(iii) is a famous observation appearing in both (Kripke 1965) and (Lemmon
1966).

Proposition 6.7 (i) If F is a weakly homogeneous frame, then L(F) is Halldén
complete.
(ii) If C is a weakly homogeneous class of frames, then L(C) is globally Halldén
complete.
(iii) A modal logic is Halldén complete iff it is not the intersection of two
modal logics properly extending it.

38As mentioned in note 28 of (Humberstone 2007b), the phrase globally Halldén complete is used in a
different sense in (Kracht 1999). Recalling the discussion in Section 4 in which Kracht used the Halldén
completeness terminology for a variation on the condition of uniformity (or cancellation) for consequence
relations, let us add the further clarification that when this terminology is used sans phrase, it is the local
consequence relation associated with a logic that Kracht has in mind – see note 23, and “globally Halldén
complete” is used in (Kracht 1999) for the case in which it is, instead, the global consequence relation that
is involved.
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(iv) A normal modal logic is globally Halldén complete iff it is not the inter-
section of two normal modal logics properly extending it.

Part (iii) is a famous observation appearing in both (Kripke 1965) and
(Lemmon 1966), while part (i) here is Corollary 6.41.6 in (Humberstone

2011), derived as a consequence of the observation that a variable-disjoint
disjunction is valid at a point in a frame just in case one of the disjuncts is.
Slightly varying Example 4.3 from (Humberstone 2007b) to illustrate some
of these concepts, given a frame F = ⟨W,R⟩ call a point x ∈ W 1-symmetric
(“in F”, though we take this as given by the context in future) just in case
for all y ∈ W if Rxy then Ryx, and 1-transitive just in case for all y, z ∈ W ,
if Rxy and Ryz then Rxz.39

Example 6.8 If we are interested in the class of frames in which each point
is 1-symmetric or 1-transitive or both), it is easy to see that the modal logic
determined by this class of frames is the smallest normal modal logic contain-
ing the formula (p → □♢p) ∨ (□q → □□q) – evidently a Halldén incomplete
logic. On the other hand we may instead take an interest in the logic deter-
mined by the class of frames which are symmetric or transitive or both (i.e., in
which every point is 1-symmetric or every point is 1-transitive – though here
we could equally well replace the point properties with those alluded to in
note 39: 2-symmetry on the one hand or 2-transitivity or 3-transitivity on the
other). In this case, we find that the logic in question is the smallest normal
modal logic containing all formulas

□m(p → □♢p) ∨ □n(□q → □□q),

with m,n ∈ Nat, and now our logic is not just Halldén incomplete but globally
Halldén incomplete (not globally Halldén complete, that is). ◀

Let us observe in closing that it isn’t always necessary to explicitly bolster
the disjunction with arbitrarily iterated occurrences of □ in the manner of Ex-
ample 6.8, though, because we can let the infrastructure of the normal modal
logic in play do that work for us. Consider for instance, the logic (KTc in one
popular nomenclature due to Chellas and employed in Humberstone 2016):
the smallest normal modal logic containing the formula p → □p, determined

39There are also concepts in this vicinity, of 2-symmetry – mentioned in (Humberstone 2007b) – and of
2- and 3-transitivity – see (Humberstone 2016, 185 ff.), though to save perusing these sources, let’s just say:
work your way through the variables used in these first-order conditions.
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by the class of frames in which each point bears the accessibility relation to at
most itself. Rewriting this axiom as (p ↔ □p)∨□⊥ we reveal its (well-known)
Halldén incompleteness. We leave the interested reader to check – ‘globality
for free’ – that in fact in this case all the formulas □m(p ↔ □p) ∨ □n□⊥
are already provable in this logic without further ado (without either disjunct
being provable). In KTc the behaviour of □ is exactly what it would be if we
were to take □A as having being added to classical truth-functional logic by
defining it as Ω ∨ A, where Ω is a sentential constant about which nothing
else need be said. The reason behind this choice of notation is not to remind
the reader of (the end of) Example 6.1, but rather to recall the notation of
(Porte 1979), in which the necessity operator of Łukasiewicz’s Ł-modal logic
– not a normal modal logic, shown to be Halldén incomplete in (Anderson
1954) – is observed to be similarly definable using an unspecified constant Ω
but this time with the definiens Ω ∧ A.40 Operators so introduced are evi-
dently in the class of those called extensional (in sentence position) though
not truth-functional in (Humberstone 1988), where all such connectives are
observed to yield Halldén incompleteness, the disjuncts (of a suitable witness
disjunction) running through alternative candidate truth-functions.41
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Appendix: longer notes for sections 1–3

For section 1

On Dummett and others. Although here we are mainly concerned with
the homophonic case, it is worth recording some contrasting reactions to non-
homophonic (though still isological) model theory alluded to in Section 1. At
p. 331 of (Brady 2003), we read:

In more recent times, even the study of formal logics, not based on
classical logic and seen as alternatives to classical meta-logic has
been pursued using a classical logic, with little if any explanation
of this, thus creating a conflict between the object- and meta-
logics. This has certainly been the case with relevant logics and
intuitionistic logic, with very little written on the use of these
non-classical logics in setting up their own meta-theory. (But, see
Meyer 1985.)

The publication date for this source is 2003 though of course there was a
considerable gestation period for some of the material in (Brady 2003), so
it is interesting to see a rather different view of how “very little” work has
been done in the direction in question coming from (Dummett 1991, 54f.), a
passage quoted in (Williamson 2011) and (Williamson 2017):

A thoroughly pernicious principle has gained considerable popular-
ity in recent years. It is that in formulating a semantic theory the
metalanguage must have the same underlying logic as the object-
language. When this principle is followed, the proponent of a non-
classical logic has a perfect counter to an argument in favour of a
classical law that he rejects, namely, that the argument assumes
the validity of the law in the metalanguage.

Williamson is not concerned with the issue of how prevalent such work has
been, but with the merits of Dummett’s proposed alternative methodology:
that in discussing their respective logics with each other, the parties to the
discussion (the classical and intuitionistic logician, for instance) should not
exploit features on which they disagree, but set up any semantic apparatus in
such a way as to be insensitive to that disagreement, allowing the discussion to
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proceed on neutral terms.42 This desire of Dummett’s to couch the discussion
in terms not contested by either party is presumably what leads him to include
a condition on the treatment of sentence letters p at a node a in a Beth model
for intuitionistic logic – condition (iiib) on p. 139 of (Dummett 1977) (or p. 191
of the first edition) – to the effect that “p is verified at a or p is not verified at
a”, whose inclusion will strike classically backgrounded readers as problematic
not because it introduces something potentially controversial but because it
suddenly becomes evident that Dummett is not conducting the discussion
in the usual ‘classical meta-logic’ style and explicitly imposing a condition
which from that point of view would be vacuous, so that the reasoning will be
acceptable to intuitionist. (This condition does not have the same unfortunate
effects as Brady and Rush’s condition (*) is seen to have in the present section,
because Dummett is presenting Beth’s far-from-homophonic model theory, but
doing so while conducting the discussion using no intuitionistically contested
metalogical principles. Thus Dummett often includes language such as the
following – from p. 163 of Dummett 1977 – “if we wish our argument itself to
be intuitionistically valid”. )

Dummett’s ‘neutral ground’ idea bears on the remarks quoted from (Priest
2006) in the main body of Section 2: “Is it to be supposed that their account of
this behaviour is to be given in a way that they take to be incorrect? Clearly
not. The same logic must be used in both ‘object theory’ and ‘metatheory’.”
Taking “incorrect” to mean “not correct”, there are two senses to bear in mind
for such phrases as correct logic. One may have in mind a favoured account
of validity w.r.t. which the logic in question is sound and complete, and by
correct mean precisely that: both sound and complete. Alternatively, with
such a notion of validity in mind one may simply mean that the logic is sound
w.r.t. that notion of validity. When invited by Priest’s rhetorical question
as to whether someone should be expected to reason in accordance with a
logic which is not correct, one is inclined to agree because one should not be

42(Aberdein and Read 2009, 649), touch on the passage quoted from Dummett with apparent approval, and
also provide some pertinent further references. (Field 2008, 111–114), also stresses Dummett’s desire not to
beg contested questions, though he seems more confident than Dummett that a classical metatheory achieves
the required neutrality. Here is Field on p. 111: “Suppose (. . . ) that an advocate of a non-classical logic
for vagueness were to propose a definition of validity for vague languages in vague terms. In that case, one
would presumably have to use that non-classical logic to apply the definition. Most people who advocated
other logics, e.g. classical logic, would protest that they didn’t know what to make of the proposed logic:
that when they employed the definition, using their own classical reasoning, they got different results from
the non-classical logician who advocated the definition. The point of a definition of validity in an effectively
classical set theory that virtually all theorists can agree on is precisely to avoid such an unpleasant situation.”
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expected to reason unsoundly by one’s own lights. But this requires taking
“correct” in the second of the two senses just distinguished. There is no similar
pressure to answer, as Priest does “Clearly not”, if correctness is taken the
first way: there is nothing wrong with being asked (for dialectical purposes) to
reason according to a logic which is weaker than one that is complete according
to one’s favoured notion of validity, and so we cannot conclude without further
ado, as Priest does here, that the same logic must be used at the two levels.
(However, the ‘further ado’ is readily forthcoming in Priest’s case, since the
logic – classical logic – he is being expected to reason in accordance with does
endorse principles, such as disjunctive syllogism, which he rejects, rather than
merely being expected to refrain from availing himself of logical principles he
accepts.)

Williamson’s discussion of Dummett, to resume that thread, follows Dum-
mett’s own example of proceeding, next, to consider the case of quantum logic
in which a homophonic treatment of conjunction and disjunction – exactly the
connectives for which such a treatment was unproblematic intuitionistically
and relevantly – would be an evident violation of Dummett’s injunction to try
to couch the semantical discussion in terms which do not immediately beg the
question as to whether the contested distribution laws are correct. Dummett
has long stressed (e.g., in Dummett 1976, 274f.), approvingly reporting some
thoughts of Putnam’s, that the use of truth-tables to settle difference between
this pair of parties violates the insensitivity demand in its presumption that
the 2k rows (where k sentence letters are involved) exhaust the cases to be
considered. (The much less enthusiastic reception given to Putnam’s ideas by
Kripke here is reported in pp. 192–199 of Berger 2011; see also Stairs 2016.)
Isn’t it odd, though, that the parties to this debate entitle their papers “Is
logic empirical?” on the grounds that the facts of quantum mechanics are
taken, by those returning an affirmative answer to this question, as evidence
against the correctness of the ∧/∨ distribution laws? After all, even if the
quantum mechanical facts had been otherwise, defenders of this answer would
presumably believe they could instead have been as currently envisaged, so the
distribution laws would not be necessarily or a priori correct. And this mere
possibility is not something that needs to be established empirically, even if it
is the empirical facts that (according to Putnam and others) bring it to our
attention as an actualized possibility.
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Soundness without reference to a particular axiomatization. To con-
clude the initial puzzles raised in Section 1 by the Brady–Rush passage, one
further issue calls for comment. The question of soundness and completeness
usually arises when, with a notion of validity to hand, provided by whatever
semantic account is in play, one wants to compare it with provability in this or
that proof-system, such as an axiomatic system, a natural deduction system,
or a sequent calculus. But there is no mention, even in general terms, in the
Brady–Rush discussion, of any axioms or rules, to take the axiomatic route
(suggested by their talking of completeness as requiring us to show that an
arbitrary nontheorem is not valid, rather than, more generally, that an un-
provable sequent is not valid). Though we will have a look at how some of
this would go for a concrete axiomatization of a propositional logic in Section
2, it should be acknowledged that the Brady–Rush discussion can be made
sense of without the consideration of proof system: we simply take the set
of (in the axiomatic case) theorems as given: this is the logic we are to deal
with and to show its soundness is to show that all of them are valid, and for
its completeness that no other formulas of the language in question are valid.
This is the course explicitly adopted in (Bacon 2013), for example, whose
treatment (p. 347) helps itself “by brute force” to a predicate Prov of formulas
and axioms in the (non-classical) formal metatheory Prov(A) for each theorem
A of the object logic and (what we may think of as) the negation of Prov(A)
for non-theorem, as well as inductive axioms like those concerning the con-
nectives in (Brady and Rush 2009).43 Further, while Brady and Rush discuss
arbitrary logics (concentrating on arbitrary non-classical logics but presum-
ably not intending to exempt classical logic from the claimed triviality of the
procedure they describe – see the last paragraph of Section 3), Bacon delim-
its algebraically a range of logics, essentially Rasiowa’s ‘standard systems of
implicative extensional propositional calculi’ (to quote the title of Rasiowa
1974, §8.5), and – a definite bonus – stresses logics as consequence relations
(or suitable sets of sequents, we may say) rather than sets of formulas, for
consideration in (Bacon 2013):44 each such logic is the consequence relation

43Bacon writes “Prov( ⌜φ⌝)” rather than “Prov(A)” and has a slightly different way of dealing with the
sentence letters than Brady and Rush. The full sentence in which the phrase “brute force” appears is as
follows: “Here this done by brute force – a thorough metatheorist might wish to set up a classical theory of
syntax and provide an axiomatic account of provability.” An example of such thoroughness, devoted to the
case of classical propositional logic, is perhaps provided by (Mason 1985).

44Throughout the discussion consequence relations are to be understood in accordance with the standard
definition, as given for example in (Kracht 1999), §1.4; when considered as logics, we take them to be specif-
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determined by which is given a matrix based a complete lattice (top element
designated) equipped with a binary implication-interpreting operation con-
nective satisfying the conditions of (Rasiowa 1974) defining what are there
(Chapter 2) called implicative algebras.45

For section 2

Brady on the interpretational meta-logic. On turning, as instructed
in the quotation in Section 2 from (Brady and Rush 2009), to Chapter 13
of (Brady 2003), one finds a section entitled ‘Interpretational Meta-Logic
and the Semantics of Quantified Relevance’, with the following words by way
of explanation of this distinction (p. 332); the first ellipsis in this quotation
recalls such conditions – numbered (i), (ii), (iii) in (Brady 2003) – as those
for →, &, etc., under (2) of the quoted passage in Section 1:

When one thinks about it, there is a part of the meta-theory
that corresponds most closely to the object-logic, that is, the logic
of the meta-logical connectives used in expressing the interpreta-
tion statements (. . . ) A classical meta-logic could be built up from
just these meta-logical connectives, as it is part of the Hilbertian
usage of meta-logic. This meta-logic could reasonably be seen as
the interpretation of the corresponding object-logic and thus we
will call it the interpretational meta-logic. This is just the logic of
the interpretation statements, without reference to the underlying
meta-logic, which we take to be the logic used to set up the rest

ically substitution-invariant consequence relations – satisfying the condition (sub.) in Kracht’s discussion,
that is – and all examples in the present paper are also finitary (satisfy Kracht’s condition (cmp.), that is).

45The logical principles concerning the implicational connective, for which we write →, thereby secured are:
A,A → B ⊢ B; ⊢ A → A; A ⊢ B → A (evidently a principle which would not appeal to Brady and Rush,
given their relevant-logical sympathies); A → B,B → C ⊢ A → C; and A → B,B → A ⊢ C(A) → C(B)
where C(A), C(B) are formulas resulting from uniformly substituting resp. A,B for the same sentence letter
occurring in some formula C. If that sentence letter is, say p, one would often more explicitly write C as
C(p), but since its identity is immaterial, the neutral notation C(·) is more suggestive and is used in the
main body of Section 2. (See Chapter 8 of Rasiowa 1974 for details, and Font 1999 for corrections of
some aspects of Chapters 1 and 8 of Rasiowa 1974.) Returning to Bacon, the binary meets and joins in the
lattice interpret conjunction and disjunction connectives, with their potentially infinitary cousins interpreting
quantifiers. The latter also provide top and bottom elements, the latter being used as the consequent of
an implication to interpret negation (slightly oversimplifying the actual details of Bacon’s presentation here,
which in fact includes not only first-order quantifiers but monadic second-order quantifiers, the latter used for
quantifying over models in the setting in which all we need to know about a model is which atomic formulas
it verifies, and so models can be identified with sets or properties of such formulas).
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of the semantics. Moreover, for some suitable purpose, we could
separate off this interpretational meta-logic from the underlying
meta-logic, even though both logics are classical. Since the in-
terpretational meta-logic satisfies (i), (ii) and (iii), it is indeed an
applied classical logic, applied to interpretation statements of the
form I(A) = T (or F ), with (i)–(iii) acting as meaning postulates
which determine the interaction of the meta-logical connectives
with these statements. (Note that the ‘iff’s in (i)–(iii) are of the
underlying meta-logic.)

Although Brady supplies several further paragraphs in elaboration of this dis-
tinction, which broaches the subject of the quasi-homophonic version of the
connectives in question, the idle parameters being for points in a Routley–
Meyer model, the present author was able to make little better sense of them
than of the above passage and the interested reader is directed to that dis-
cussion (Brady 2003, 332–334). The reason for including the above passage is
the fact that Brady and Rush refer to it in (Brady and Rush 2009) as back-
ground – despite the difference in orientation (“both logics are classical”46) –
and because of the last parenthetical sentence: the occurrences of ‘iff’ are part
of the (language of) the underlying meta-logic.

Even if it is not be entirely clear what Brady has in mind, this passage does
at least allow us to conclude that the occurrences of “iff” in the conditions the
Section 1 passage need not correspond to a (primitive or defined) connective
of the object language. Thus in what may seem to be cavalier disregard for
the contrast for the problematic distinction between interpretational and un-
derlying meta-logics here – if this is anything other than the contrast between
homophonic and non-homophonic semantic theories in the single meta-logic in
play – we take it that the metalanguage will typically have additional logical
vocabulary governed by the (one and only) meta-logic in accord with which
the semantics is being discussed, over and above the logical vocabulary of
the object language, alongside the quantifiers already granted that status in
Section 1 (for the semantics of a propositional logic).

Bacon and others. As was mentioned in the second of the longer notes
on Section 1, (Bacon 2013) is not concerned to show the soundness of a

46In which case, one might ask, why are we talking about two logics? And the logics differ how do they
get to rub shoulders together in reasoning to a verdict of validity or invalidity of some candidate formula or
inference in the object language, for instance?
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particular axiomatization of a logic within the (algebraically delimited) range
with which but just with showing that all the provable formulas – however
they get to be provable – are valid, where this last is a matter of truth on
every interpretation much as in Brady and Rush’s discussion. The validity
and provability of a formula A are expressed in the metalanguage by Prov(A)
and Valid(A).47 He calls the semantic theory in this style for a logic L, TL – so
Prov and Valid mean, respectively, provability in L and validity according to
TL – and describes L as weakly sound w.r.t. TL if (quoting from the formulation
in Coro. 2.3 of Bacon 2013,48 changing “φ” to “A”) “Valid(A) follows in L
from TL ∪ {Prov(A)}”, which in an adaptation of the notation used in the
body of Section 2 would be written as

TL,Prov(A) ⊢ LValid(A),

with TL playing the same kind of ancillary role as “(→/→)” in (mp) in Section
2, and which Bacon distinguishes from strong soundness:

TL ⊢ L Prov(A) → Valid(A).

Note that this strengthening of soundness has nothing to do with the strength-
ening alluded to in the discussion of ⊢BCK in Section 2 which involves allowing
n > 0 in the claim that A1, . . . , An ⊢BCK B implied the truth of B on every
interpretation verifying each of the Ai. Bacon argues strong soundness for
all L in his range, according to the corresponding TL, on the basis of weak
soundness of aspects of his TL not gone into in this summary, rather than
on the basis of the deduction theorem for L, which he notes not all logics in
the range satisfy – the case of ⊢BCK (and thus ⊢ BCK) considered here being
one such case.49 ( (Girard and Weber 2018) also take as their basic logic
BCK, with quantifiers added as well as multiplicative or intensional conjunc-
tion – see note 7 – but additive or extensional disjunction, on the other hand,
and add modal operators with a view to treating them semantically using the

47Bacon actually uses letters from the range φ,ψ, puts corner-quotes around them for talking about them
in the metalanguage.

48I quote the Corollary here rather than the actual definition(s) at the start of Section 2.3 of (Bacon 2013),
since weak soundness and completeness are given each other’s definitions by mistake (as I am grateful to
Bacon for confirming for me).

49A famous counterexample here: p → (p → q), p ⊢BCK q while p → (p → q) ⊬BCK p → q; there are of
course more general ‘parametrized local’ versions of the deduction theorem which are satisfies in such cases,
that of ⊢BCK being reviewed in Example 2.1.2 of (Czelakowski 2001) – or Corollary 1.29.10 in (Humberstone
2011) for a range of cases.
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Kripke model-theoretic truth-definition in the modal-free part of an analogous
metalogic, paying special attention to the complications caused by the lack of
contraction for this enterprise.) While on the subject of soundness, mention
should be made of (Weber, Badia and Girard 2016), in which a paracon-
sistent metalogic is used in the semantic metatheory, the latter theory itself
being inconsistent – and proudly so – with the authors establishing to their
own satisfaction at least (p. 542) that the object logic is sound and not sound
(as well as that the law of excluded middle is both valid and invalid). Hmm. . .

For section 3

Bell and others. What follows is a passage from p. 6f. of (Bell 1988),
discussing in a free and easy way, which is nevertheless insistently intuition-
istic in its logic, an aspect of the models (‘smooth worlds’) of the (smooth)
infinitesimal analysis that the book – to which the attention of the philosophy-
of-logic community has recently been drawn by (Shapiro 2014) – is all about;
in the passage quoted S stands for such a ‘smooth world’, and the use of I
(for Infinitesimals) has nothing to do with its use elsewhere in our discussion
for interpretations:

If we now call two points a, b on the real line distinguishable or
distinct when they are not identical, i.e., not a = b – which as
usual we write as a ̸= b – and indistinguishable in the contrary case,
i.e., if not a ̸= b, then in S, indistinguishability of points will not
imply their identity. As a result, the ‘infinitesimal neighbourhood
of 0’ comprising all points indistinguishable from 0 – which we will
denote by I – will, in S, be nonpunctiform in the sense that it does
not reduce to {0}, that is,

it is not the case that 0 is the sole member of I.

If we call the members of I infinitesimals, then this statement may
be rephrased:

it is not the case that all infinitesimals coincide with 0.

Observe, however, that we cannot go on from this to infer that

there exists an infinitesimal which is ̸= 0.
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For such an entity would possess the property of being both distin-
guishable and indistinguishable from 0, which is clearly impossible.

If being the sole member of I, as in the first line inset here, is being the
only thing that is an element of I then the three representations canvassed in
the main body of Section 3 for “Only Fs are G” would be, in order: (i) ∀x(x ∈
I → x = 0), (ii) ∀x(¬x = 0 → ¬x ∈ I), and (iii) ¬∃x(x ∈ I ∧ ¬x = 0). It
seems clear from the gloss Bell gives in the following inset as a rephrasing
follows the structure of the negation of (i), and presumably more generally
takes “a ∈ {b1, . . . , bn}” to amount to “a = b1 ∨ . . . ∨ a = bn”. Compare now,
(Bacon 2013), discussing a logic for vagueness which is like intuitionistic logic
in at least this respect: it does not endorse the law of excluded middle.50 At
p. 342 there Bacon has us consider a function v, defined in deliberately vague
by saying that v(Pi) = 1 if i is small and v(Pi) = 0 otherwise, adding that
“v here is ‘bivalent’ in the sense that the codomain of v consists of two truth
values: {0, 1}.” To this is appended a footnote (note 7) which reads

To say that D is the codomain of a function f is to say that
∀x(∃y(f(y) = x → x ∈ D)). In the logics considered the codomain
of v being {0, 1} does not entail that v(x) = 1 ∨ v(x) = 0 for any
x.

Presumably this last means (eliminating an ambiguity in “any” here): “does
not entail that for all x v(x) = 1 ∨ v(x) = 0”, though the significance of writ-
ing “∀x(∃y(f(y) = x → x ∈ D))” rather than simply “∀y(f(y) ∈ D)” is not
immediately clear,51 but taking this simpler formulation as adequate the at-
tention may be to say that, recalling that D is, in the case under consideration,
{0, 1}, y ∈ {0, 1} does not mean, as suggested above for Bell, y = 0 ∨ y = 1
but rather ¬(y ̸= a∧ ¬y ̸= b∧ ¬y ̸= c). Bacon himself may not quite have in-
tuitionistic logic in mind for vagueness, though the suggestion is occasionally
made (e.g., Putnam 1983) and this gives a weaker notion of set membership
than that we presumed was operative in Bell’s discussion, serving again to

50On p. 104 in a chapter of (Bell 1988) making the logic explicit, the status of the law of excluded middle
in the theory of smooth infinitesimal analysis is explained in more detail by Bell: (i) the theory proves the
negations of some universally quantified ‘excluded middles’, rather than simply failing to prove the quantified
forms, and (ii) in “most models” of the theory all disjunctions A ∨ ∼A are true when A is a closed formula.

51Bacon has offered (p.c.) some clarification: function symbols are not officially part of the language he is
using here and “f(x) = y” is shorthand for “⟨x, y⟩ ∈ f”, with “f(x) ∈ {0, 1}”" short for something along the
lines of like “∃y((x, y) ∈ f ∧ y ∈ {0, 1})” or “∀y((x, y) ∈ f → y ∈ {0, 1})”.
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illustrate the challenging multiplicity of interpretations weakening one’s logic
can induce, to say nothing of the awkwardness of having to figure out exactly
when a transition from ¬A → B to A ∨ B and thence to some further con-
clusion can be reformulated (still terminating at that further conclusion) so
as to keep one’s reasoning acceptable by the lights of intuitionistic logic, and
similarly with the case of the converse transition in the case of relevant logic.52

52This leads us in Section 4 to explore options – such as classically based modal logics – that retain classical
(non-modal) logic, in the interests of making things easier to think through, rather than out of some conviction
of the all-purpose superiority (cf. Gabbay 1993). And although it is sometimes hard to say when this or that
classical principle is essential to a piece of reasoning, it is not always hard: see the index entries under “choice
of meta-logic” in (Humberstone 2011), for instance, as well as such discussions as those of (Bell 1988).
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views, here is some historical background. In the late 1920s and throughout
the 1930s, a small school of logic students formed around C.I. Lewis in the
Harvard Philosophy Department. The best known members of this school
were William Parry, E.J. Nelson, and Daniel Bronstein, all of whom wrote
theses on the nature of implication or entailment. Nelson (1900-1988), who
is the subject of this essay, was from Washington State. Before coming to
Harvard, he earned a bachelor’s and master’s degrees at the University of
Washington. He studied at Harvard from 1925 to 1929, where he earned his
PhD. He then was granted a travelling scholarship by Harvard, which he took
at Göttingen and the Sorbonne, before taking up a teaching position at the
University of Washington. He taught there until 1952, when he moved to Ohio
State University, where he taught until his retirement in 1968.1

Connexive logic is characterised as having some or all of the following
principles. Aristotle’s theses state that no proposition entails its own negation:

¬(A → ¬A)
¬(¬A → A)

And Boethius’s theses state that no proposition entails both a proposition and
its negation:

(A→ B) → ¬(A → ¬B)
(A→ ¬B) → ¬(A → B)

As the names of these theses suggest, connexive logic has its roots in an-
cient philosophy. These theses were adopted and logics contained them were
developed by mediaeval logicians such as Abelard.2

In his PhD thesis and elsewhere, Nelson motivates his approach to logic by
claiming that it avoids the paradoxes of strict implication, namely: that every
proposition entails every logical truth and that a contradiction entails every
proposition. Lewis famously gives an argument for the acceptance of the latter
paradox in Symbolic Logic. Perhaps less known is his argument for the same
paradox in his 1918 book, A Survey of Symbolic Logic. It is the argument in
the Survey to which Nelson reacts, and so we examine it in section 2 below.

1The information here was obtained from a biography of Nelson found at https://www.pdcnet.org/
apapa/content/apapa-2013\relax$\@@underline{\hbox{\}}\mathsurround\z@$\relax0347\relax$\@@
underline{\hbox{\}}\mathsurround\z@$\relax0348\relax$\@@underline{\hbox{\}}\mathsurround\
z@$\relax547?file{\}type=pdf.

2For general histories of connexive logic, see (McCall 2012) and (Wansing 2016).

Organon F 26 (3) 2019: 405–426

https://www.pdcnet.org/apapa/content/apapa-2013\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0347\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0348\relax $\@@underline {\hbox {\ }}\mathsurround \z@ $\relax 547?file{\ }type=pdf
https://www.pdcnet.org/apapa/content/apapa-2013\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0347\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0348\relax $\@@underline {\hbox {\ }}\mathsurround \z@ $\relax 547?file{\ }type=pdf
https://www.pdcnet.org/apapa/content/apapa-2013\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0347\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0348\relax $\@@underline {\hbox {\ }}\mathsurround \z@ $\relax 547?file{\ }type=pdf
https://www.pdcnet.org/apapa/content/apapa-2013\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0347\relax $\@@underline {\hbox { \ }}\mathsurround \z@ $\relax 0348\relax $\@@underline {\hbox {\ }}\mathsurround \z@ $\relax 547?file{\ }type=pdf


Modern Origins of Connexive Logic 407

Nelson’s logic, as we shall argue, is not just a reaction against the adoption
of the paradoxes of strict implication by his supervisor, C.I. Lewis, but also
an attempt to recast Lewis’s project of formulating a logic of entailment. For
Nelson, ‘A → B’ expresses that B is deducible from A in some intuitive sense
of ‘deducibility’. If we take the arrow to mean strict implication, this is true
for Lewis as well.

Nelson follows Lewis by beginning with a notion of consistency and defin-
ing an entailment connective in terms of it and negation. Nelson’s consistency
connective, however, is more intensional than Lewis’s, and its use results in a
very different logic of entailment. Overall, Nelson’s treatment of the connec-
tives is far more intensional than Lewis’s. His treatment of conjunction, in
particular, is intensional. He rejects the thesis of simplification, (A ∧ B) → A,
even though he admits that if A ∧ B is true then A must be true. His ap-
proach to entailment, and logic more generally, is not truth-conditional in any
ordinary sense. As we shall see, the notions of intension and meaning are of
central importance to Nelson’s approach to logic and motivate the system that
he accepts.

Although Lewis rejects Nelson’s logic, he does come to accept a philosophy
of logic that is very intensional in the manner of Nelson’s philosophical views.
They come to use very similar language to describe what logic is about.

In this paper we examine the system that Nelson puts forward in his PhD
thesis and in (Nelson 1930).3 We think that examining his actual system sheds
a lot of light on his thinking behind his advocacy of connexive logic.

2 The early argument for explosion4

In chapter V, section V of the Survey of Symbolic Logic, Lewis states that two
paradoxes of strict implication in fact are theorems of his system (Lewis 1918,
335):

3.52 ∼ p J (p J q);
3The system in the thesis seems to have a rule of adjunction (which is strangely formulated) but this does

not appear in (Nelson 1930).
4We refer to this argument as “early” because it is presented 14 years earlier than his more famous argument

of (Lewis 1951)
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3.55 ∼ ¬p J (q J p).

In (Lewis 1918), “∼” means “it is impossible that”. So, 3.52, says that if p is
impossible, then it entails everything. “∼ ¬p” means “p is necessary”, so 3.55
means that if p is necessary, then it is entailed by every proposition.

The argument that Lewis gives in section V, however, does not prove either
3.52 or 3.55. Rather, it justifies the thesis form of explosion (the proposition
that a contradiction entails everything, as opposed to a rule form according
to which contradictory theorems entail that everything is a theorem). The
argument begins with the following three principles.

P1 (p ∧ q) J q

P2 ((p ∧ q) J r) J ((p ∧ ¬r) J ¬q)

P3 (((p ∧ q) J r) ∧ (r J s)) J ((p ∧ q) J s)

P1 is just the principle of simplification. We discuss this at some length
below. P2 is the principle of antilogism. As we shall see presently, it is a
logical principle that Lewis and his school took to be a central law of logical
reasoning. P3 is just an instance of Lewis’s transitivity axiom. Lewis also
appeals to uniform substitution, the replacement of equivalents, and a rule
form of transitivity of J.

Here is Lewis’s argument as presented in (Lewis 1918, 336):

1. (((p ∧ q) J q) ∧ (q J r)) J ((p ∧ q) J r) P3
2. ((p ∧ q) J r) J ((q ∧ ¬r) J ¬p) P2
3. (((p ∧ q) J q) ∧ (q J r)) J ((q ∧ ¬r) J ¬p) 1, 2, transitivity rule

By substituting q for r we obtain:

(((p ∧ q) J q) ∧ (q J q)) J ((q ∧ ¬q) J ¬p)

By P1, (p ∧ q) J q is a theorem. And Lewis assumes that q J q is a theorem.
Hence, by the rule of adjunction, (((p ∧ q) J q) ∧ (q J q)) is a theorem, and
so, by modus ponens,

(q ∧ ¬q) J ¬p

is provable. As Lewis says “p itself may be negative” and so “this impossible
proposition implies anything” (ibid.). This last step appeals to the equivalence
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of a proposition and its double negation and the substitutivity of propositions
and their logical equivalents.5

In his early work (Nelson 1929; 1930), Nelson rejects P1 and modifies P3 in
his logic. He discusses P2 at length, both in his thesis and in (Nelson 1933),
but he retains it. As we have said, the principle of antilogism is taken by
Lewis to be a central principle of deductive inference. The historical reasons
for this have to do with the work of Christine Ladd-Franklin (1983), who
reconstructed traditional syllogisms as “inconsistent triads” of propositions.
For example, Barbara is of course

Every A is B
Every B is C

∴ Every A is C

Construed as an inconsistent triad it becomes

Every A is B
Every B is C
Some A is not C

Any two of these propositions entails the negation of the third. Hence, the
valid syllogisms that can be generated are:

• Every A is B, every B is C ∴ every A is C;

• Every A is B, some A is not C ∴ some B is not C;

• Every B is C, some A is not C ∴ some A is not B.

Lewis cites Ladd-Franklin’s reasoning about syllogisms with approval both in
the Survey (Lewis 1918, 108–110) and in Symbolic Logic (Lewis and Lang-
ford 1951, 60–61). Nelson seems to have followed him in thus treating the
antilogism as a key deductive principle.

5Given these assumptions, the argument can be made much simpler:

1. (q ∧ ¬p) J q P1, US
2. (q ∧ ¬q) J ¬¬p 1, P2, MP
3. (q ∧ ¬q) J p 2, DN, Eq
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Antilogism has a mixed reception in Lewis’s school. Nelson considers mod-
ifying it in (Nelson 1933). William Parry – a student of Lewis’s in the early
1930s – criticises antilogism because it clashes with the key idea behind his
logic of analytic implication. On Parry’s view, no implication A → B is a
theorem unless all the propositional variables in B occur in A. But, if we
accept antilogism, we may derive implications that disrespect Parry’s prin-
ciple from implications that respect it. For example, (A ∧ B) → C may
be such that V ar (C) ⊆ V ar (A) ∪ V ar (B), but this is no guarantee that
V ar (¬B) ⊆ V ar (A) ∪ V ar (¬C) in (A ∧ ¬C) → ¬B.

3 Consistency and entailment

Nelson’s approach to logic is extremely intensional. Nelson not only interprets
the entailment connective as an intensional operator, but he also interprets
conjunction intensionally:

I do not take p ∧ q to mean “p is true and q is true”, but simply
“p and q”, which is a unit or whole, not simply an aggregate, and
expresses the joint force of p and q. (Nelson 1930, 444)

How to understand the notion of the “joint force” of p and q is unclear. Nelson
postulates very few axioms for conjunction in his logic (see §4), so we know
very little about its nature.

Nelson uses his intensional conjunction to reject the thesis of simplification
((p ∧ q) → p):

Naturally, in view of the fact that a conjunction must function as a
unity, it cannot be asserted that the conjunction of p and q entails
p, for q may be totally irrelevant to and independent of p, in which
case p and q do not entail p, but it is only p that entails p. I can
see no reason for saying that p and q entail p, when p alone does
and q is irrelevant, and hence does not function as a premise in
the entailing. (Nelson 1930, 447)

In this passage, Nelson alludes to some strong form of real use criterion for
premises in an inference. The proposition p ∧ q can only entail r when both p
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and q are really used in the derivation. As we shall see in section 4 below, it
would seem that Nelson’s notion of real use is very strict indeed.

It is interesting to compare Nelson’s conjunction with the intensional con-
junction of relevant and linear logic. The intensional conjunction of relevant
and linear logic is called “fusion”. Here we represent it by ⊗. Like Nelson’s
conjunction, fusion does not satisfy simplification, that is, (p ⊗ q) → p is not
valid in relevant or linear logics. Nelson’s connective, however, satisfies the
principle of idempotence:

p → (p ∧ p)
In strong relevant logics like the the logic R of relevant implication or E of
relevant entailment, fusion is idempotent. But it is not in linear logic or in
weaker relevant logics. Idempotence (p → (p ⊗ p)) in these logics is equivalent
to contraction:

(p → (p → q)) → (p → q)
Moreover, adding contraction to these logics, by Curry’s paradox, trivialises
naïve theories of truth, sets, or properties.

Nelson observes that the idempotency of intensional conjunction, together
with antilogism, yields undesirable outcomes. Tweaking Nelson’s example
slightly, “Rome is in Italy” entails “Rome is in Europe”. However, if “Rome
is in Italy” is equivalent to “Rome is in Italy and Rome is in Italy”, then
the latter also entails “Rome is in Europe”, whence antilogism gives that
“Rome is in Italy and Rome is not in Europe” entails “Rome is not in Italy”.
This, however, is absurd, because our conclusion does not follow from the
“joint force” of the conjuncts. Nelson, however, does not go on to question
idempotency of his intensional conjunction. Rather, he seems to suggest that
“Rome is in Italy and Rome is in Italy” is actually a simple sentence, and not
a conjunction of two simple sentences:

If at any place in a symbolic statement, an additional mark does
not add to the logical significance, that mark should be dropped
out. [...] We might formulate this as a principle of significance:
p ∧ p must be given no significance, either in operations or in
inferences, beyond that possessed by p. (Nelson 1933, 281)

Given his view that ‘p ∧ p’ says no more than ‘p’, conjunction must be idem-
potent.
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In the mid-1930s, however, Nelson’s opposition to simplification begins
to waver. He says that simplification is more intuitive than addition (p →
(p∨q)), and suggests that addition may be abandoned and that either uniform
substitution be restricted or that antilogism be restricted with a consistency
proviso about the sentences at issue (Nelson 1933, 279).6 We think that he may
have been influenced in this by Parry. Parry’s analytic implication severely
restricts addition, in an attempt to avoid the paradoxes of strict implication.
Parry’s thesis was defended in 1931, and so its ideas and results may not
have been known to Nelson until well after he wrote his own dissertation and
(Nelson 1930).

In this paper, we concentrate on Nelson’s entailment and consistency op-
erators as they are developed in (Nelson 1929; 1930). These two closely linked
connectives are the central concern of most of Nelson’s writings about connex-
ive logic. In addition, Nelson’s critique of Lewis concentrates on the latter’s
treatment of these two connectives.

First, let us look at Lewis. In the Survey, Lewis defines the consistency
connective (◦) as follows:

A ◦ B =df ¬ ∼(A ∧ B)

But we interpret this definition in terms of possibility and standard (exten-
sional) negation:

A ◦ B =df ♢(A ∧ B)
In the Survey, Lewis understands possibility in syntactic terms. He defines
a “possible situation” as a consistent set of propositions. An “impossible
situation” is an inconsistent set of propositions (Lewis 1918, 333). Then,
A ◦ B is true if and only if there is some possible situation that contains both
A and B.

Strict implication is defined in terms of consistency and extensional nega-
tion:

A J B =df ¬(A ◦ ¬B)
Lewis interprets strict implication in terms of situations by saying that p J q
is true if and only if any situation in which p is true and q is false is impossible
(ibid.). Lewis’s treatment of possibility, consistency, and strict implication is

6In a letter to the editors of Mind in 1936, Nelson says “I still believe, however, that (p ∧ ¬p) → q is
unacceptable, but that it can be avoided by means other than the rejection of (p ∧ q) → p” (Nelson 1936b).
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not semantic in the modern sense. Rather these notions are understood in
terms of sets of propositions from which we can or cannot derive contradic-
tions. The logic used to determine what sets are consistent is the logic of strict
implication itself (see Lewis 1923a). Whether the sort of circularity involved
here is vicious is not our current concern. Rather, we just wish to indicate the
ways in which Nelson’s view is different from Lewis’s.

Nelson’s approach to consistency and inconsistency is much less formal
than Lewis’s. We think that Nelson’s notion of inconsistency is more ac-
curately represented as a relation of conflict between meanings, rather than
consistency in any standard sense.7 For the most part, Nelson thinks that we
need to examine the meanings of sentences to determine whether they are in
conflict with one another. This is an informal procedure, in the sense that it
cannot be fully represented in a formal system. Nelson, however, does give
us some structural constraints on this notion of conflict, and these constraints
are represented formally. Here are three of the most important constraints:

1. No proposition conflicts with itself.

2. Every proposition conflicts with its own negation.

3. No proposition entails any proposition with which it conflicts.

Nelson uses Lewis’s notation (◦) for consistency (i.e. failure of conflict). He
defines conflict (|) as

A|B =df ¬(A ◦ B)

and he defines his entailment connective in terms of conflict. We use ‘→’ for
Nelson’s entailment. He used ‘E’, but we find that rather ugly. Here is the
definition of entailment:

A → B =df A|¬B

The second constraint is an axiom of Nelson’s logic:

p → p

7Nelson’s glosses on consistency and conflict are rather enigmatic. For example (Nelson 1936a, 507): “even
if p, possibly ¬q” is a reading of ‘p ◦ ¬q’. The use of ‘even if’ and the obvious scope problems concerning
‘possibly’ in this formulation obscure its meaning. We think the notion of conflict and lack of conflict make
more sense of | and ◦.
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i.e. p|¬p. The third constraint is also an axiom:

(p → q) → (p ◦ q)

By uniform substitution and modus ponens, we then can derive the first con-
straint:

p ◦ p

or, in terms of conflict (using double negation introduction):

¬(p|p)

Thus no proposition conflicts with itself. Even contradictions fail to con-
flict with themselves. Nelson’s notion of conflict is not truth conditional,
unlike Lewis’s notion of consistency. On Lewis’s view, as we have seen, two
propositions are consistent if and only if they can be in the same possible
situation. A contradiction cannot be in a possible situation. The notion of
conflict has to do with oppositions between the contents of propositions.

Graham Priest has suggested that negation in connexive logic be inter-
preted as “cancellation” negation (Priest 1999). On this view, contradictions
are taken to have no content. We do not think that Nelson interpreted his
negation in this way (although this is not to say that this might be a bet-
ter way to interpret his negation). Contradictions, like all other statements,
express propositions, and propositions are taken to have positive contents, in
some sort of Fregean sense. Nelson does not consider the amount of content
a statement has. He has a purely qualitative understanding of content.8

The difference in approach to contradictions/conflicts is part of a basic dif-
ference in philosophy of logics between Nelson and Lewis. In the 1920s, Lewis
adopts a pragmatic approach to analyticity, apriority, and logical truth (Lewis
1923b; 1930; 1929). Part of this pragmatic conception is that analyticity and
logical truth are conventional. In the early 1920s, Lewis develops his earlier
notion of situations into what he calls systems. Systems are logically closed
sets of states of affairs (Lewis 1923a).9 On the pragmatic view, which sets of
states of affairs count as systems is to a large extent a matter of convention.

8Priest’s reading of connexive logic is rather post-Carnap/Bar Hillel. It treats the semantics of sentences
in terms of how much information they convey. Priest’s interpretation of connexive logic may be more fruitful,
but our purpose here is purely historical and we only wish to examine what Lewis and Nelson are doing.

9Lewis uses the terminology “facts” for what we call “states of affairs”. The reason we do not adopt his
terminology is that “fact” now generally refers to entities that are true whereas states of affairs need not be
true.
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For Nelson, on the other hand, which intensional relations (such as conflict)
hold between propositions is evident to one in an act of immediate intuition,
which is independent of “any acquaintance with particulars” (Nelson 1929,
3). Thus, whereas Lewis has a pragmatic and conventionalist approach to the
philosophy of logic, Nelson takes a hard realist-platonist approach.

Before we move on to our presentation of Nelson’s logic, we indulge our-
selves in a bit of speculation. In an appendix to Symbolic Logic, Lewis formu-
lates four logics in addition to his favourite system of strict implication, which
at that time is S2. He wishes to avoid committing himself to the following
strong form of transitivity of J (Lewis and Langford 1951, 496):

(p J q) J ((q J r) J (p J r))

When writing the first edition of Symbolic Logic in the early 1930s, Lewis has
no proof that this form of transitivity cannot be derived in S2. He knows that
it can be derived in S3. He also can prove that it does not follow in S1, which
results from dropping the axiom

(∗) ♢(p ∧ q) J ♢p

from S2. Lewis suggests that S1 be adopted if it is found that S2 contains
strong transitivity. The axiom ∗, however, is rather intuitive and dropping it
has seemed to most logicians a bad price to pay to avoid strong transitivity.
The intuitiveness of ∗ rests on the reading of ♢ as possibility or as consistency
(which is the same thing for Lewis). If, on the other hand, we read ♢(p ∧ q)
as saying that p does not conflict with q we may not think that ∗ is valid. For
the content of p and q may not conflict, but p may conflict with itself. It may
be, then, that Nelson had some influence on Lewis in the latter’s formulation
of S1. Whether this is really the case, we have no strong evidence.

4 Nelson’s logic

In this section, we present Nelson’s connexive logic, which we call ‘NL’.
We change Nelson’s notation slightly, using ∧ instead of mere concatena-

tion, → instead of E, and ¬ instead of −. Nelson’s primitive connectives are
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¬, ◦, and ∧. Inconsistency is defined, quite reasonably, using consistency and
negation:

A|B =df ¬(A ◦ B)

and entailment is defined in terms of inconsistency:

A → B =df A|¬B

Intensional logical equivalence or the identity of meaning, =, is defined as
usual:

A = B =df (A → B) ∧ (B → A)

Nelson also defines an “intensional sum” (an intensional disjunction), ∨:

A
∨

B =df ¬A|¬B

We do not discuss intensional sum in what follows, and it does not appear
in any of his axioms. In the axiomatisation of his logic Nelson does use an
unusual abbrevation, A ̸= B ̸= C. It is defined as follows:

A ̸= B ̸= C =df (A ̸= B) ∧ (B ̸= C) ∧ (A ̸= C).

Nelson set out his system on pages 138-141 of his thesis.

Axioms of NL

1.1 p → p
1.2 (p|q) → (q|p)
1.3 p → ¬¬p
1.4 (p → q) → (p ◦ q)
1.5 (p ̸= q ̸= r) → (((p → q) ∧ (q → r)) → (p → r))
1.6 (p ∧ q) = (q ∧ p)
1.7 ((p ∧ q) → r) → ((p ∧ ¬r) → ¬q)

We have a few comments to make on the axiom list before we go on to
state the rules of NL.

Axiom 1.1, stated in terms of the conflict connective, is

p|¬p,

Organon F 26 (3) 2019: 405–426



Modern Origins of Connexive Logic 417

which merely states that every proposition conflicts with its own negation.
Axiom 1.2 states that conflicts are symmetrical. 1.3 is not justified in terms
of the notion of conflict, but rather in terms of an intuition about negation.
As we shall seen below, the converse of 1.3 is also provable and the meaning
of any proposition according to this logic is the same as the meaning of its
double negation.

Axiom 1.4 is the only contra-classical axiom in the logic. We discussed it
in section 3 above. It says that if either of two propositions entails the other,
then they do not conflict with one another. Together with 1.1, 1.4 entails that
no proposition conflicts with itself.

Nelson prefixes his transitivity axiom (1.5) with p ̸= q ̸= r. If we eliminate
the prefix, then we get theorems like

((p → p) ∧ (p → q)) → (p → q),

that are instances of the simplification scheme that Nelson rejects. Daniel
Bronstein (another of Lewis’s students) accuses Nelson of committing a fal-
lacy here (Bronstein 1936, 167–168). Bronstein points out that just because
unconstrained transitivity allows the derivation of some instances of simplifica-
tion does not mean that it allows the derivation of all instances. In particular,
it is not shown that unrestricted transitivity will allow the derivation of any
paradoxes. Moreover, one might wonder, however, whether this thesis is as
objectionable as other cases of simplification, since we can think of p → p be-
ing used (rather inefficiently) to derive p → q from itself by transitivity. That
is, we do not have to think of the derivation of p → q from (p → p) ∧ (p → q)
merely as a dropping of the first conjunct of the premise.

The inclusion of the prefix in this axiom10 may indicate that Nelson has
in mind a very strong form of real-use principle. The above instance of tran-
sitivity might be thought to be objectionable because p → p is not needed
(although it may be used) to derive p → q. This very strong version of the
principle says that (A1 ∧ ... ∧ An) → B can be allowed as a theorem only if
there is no proper subset {i, ..., j} of {1, ..., n} such that (Ai ∧ ... ∧ Aj) → B is
also a theorem. This is a very strong requirement indeed, and we do not have
enough evidence to attribute it to Nelson.

The antilogism axiom (1.7) seems even more natural if read in terms of
10Which he continues to accept in (Nelson 1933).
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conflict (modulo some fiddling with double negations):

((p ∧ q)|r) → ((p ∧ r)|q)

This is very close to Ladd-Franklin’s formulation of her principle of inconsis-
tent triads.

NL does not contain an axiom, such as, (p ∧ (q ∧ r)) → ((p ∧ q) ∧ r),
that states that conjunction is associative. His use of strings of conjunctions
without parentheses makes it seem as though he thought of conjunction as
associative, but it is difficult to say whether the omission of an associativity
axiom was an oversight or is intentional.

Rules

The rules that Nelson states in his axiomatisation are the following:

⊢ A → B ⊢ A
⊢ B

⊢ A ⊢ B
⊢ A ∧ B

We abbreviate ‘modus ponens’ as ‘MP’ and ‘adjunction’ as ‘Adj’.11

In his proofs of theorems, Nelson also makes free use of two substitution
rules: a standard rule of uniform substitution for propositional variables (‘US’)
and a rule of substitution for logical equivalents. This latter rule, for which
we adopt the name ‘Eq’ from (Hughes and Cresswell 1968), is the following:

⊢ A = B
⊢ C = C ′

where C ′ results from replacing one or more occurrences of A with B in C.
NL, as we think of it, then contains axioms 1.1-1.7, the rules MP, Adj, US,

and Eq.
11Nelson’s statement of Adj is somewhat convoluted: “If a proposition, or all the propositions of a logical

product, are asserted, separately, or otherwise, but as such, then whatever is entailed by or is identical with
that proposition, or that logical product, as the case may be, is categorically asserted” (Nelson 1929, 141).
Clearly this statement includes Adj, but also a rule that says that whatever is entailed by a theorem is a
theorem. This is included in the rule MP, so we do not need to state it independently.
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Here is a proof of the left to right half of the principle of double negation
(DN) (A → ¬¬A) (taken, in effect, from Nelson 1929, 159):

1. ¬A → ¬A 1.1, uniform substitution
2. ¬A|¬¬A 1, def. of →
3. ¬¬A|¬A 2, 1.2, MP
4. ¬¬A → A 3, def. of →

Together with axiom 1.3 and Adj, we obtain

⊢ p = ¬¬p.

We call this ‘DN’ and we use it extensively in our other proofs. For example,
here is a proof of contraposition:

1. (p|¬q) → (¬q|p) 1.2, US
2. (p|¬q) → (¬q|¬¬p) 1, DN, Eq
3. (p → q) → (¬q → ¬p) 2, def. of →, Eq

5 Nelson’s logic as a connexive logic

A connexive logic is characterised as a system which accepts some or all of
Aristotle’s and Boethius’s theses. Nelson’s axiom 1.4 is

(p → q) → (p ◦ q)

By the definition of conflict, DN, and Eq, we obtain

(p → q) → ¬(p|q)

and so, by DN, the definition of implication, and Eq we get

(p → q) → ¬(p → ¬q).

This is Boethius’s first thesis. In fact, 1.4 is equivalent to Boethius’s first
thesis:

1. (p → q) → ¬(p → ¬q) Boethius
2. (p → q) → ¬(p|q) 1, DN, Eq, def. of} →
3. (p → q) → (p ◦ q) 2, def. of ◦
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The second thesis can be derived from the first by contraposition, DN, and
Eq:

(p → ¬q) → ¬(p → q)

In (Nelson 1936a), he argues for Boethius’s theses. He does so by reading
→ as ‘if ... then’. Nelson objects to the reading of ’if ... then’ as material
implication. He claims that when one denies that ‘if p, then q’ she is not
asserting p and ¬q. When one denies ‘if the ground is wet, then it is raining’,
one does not assert that the ground is wet. She may only be denying the
connection between the ground’s being wet and rain. Nelson asserts that the
contradictory of ‘if p, then q’ is ‘p◦¬q’ (Nelson 1936a, 507). The contradictory
of p ◦ ¬q is ¬(p ◦ ¬q), i.e., p → q, hence the proper treatment of ‘if .. then’ in
English (at least in some cases) is as →.

Aristotle’s first thesis follows straightforwardly from Boethius’s first thesis:

1. p → p 1.1
2. (p → p) → ¬(p → ¬p) Boethius′s first thesis and US
3. ¬(p → ¬p) 1, 2, MP

Aristotle’s second thesis follows in the same way, but with the use of ¬p → ¬p
as a substitution instance of 1.1 and substituting ¬p for p in Boethius’s first
thesis.

NL altered by the removal of the prefix (p ̸= q ̸= r) from axiom 1.5 to
produce a standard form of conjunctive syllogism (((p → q) ∧ (q → r)) →
(p → r)), yields a subsystem of Richard Routley and Hugh Montgomery’s
connexive logic Z1c (Routley and Montgomery 1968). Let us call this logic
with the removal of the prefix from 1.5, NL−. This logic is very closely re-
lated to weak relevant logics. If we define A ◦ B as ¬(A → ¬B) and A|B as
A → ¬B, then all the axioms of NL−, except 1.4, are provable in the relevant
logic DK. Whether NL (or even NL−) should be considered a relevant logic is
a technical issue that we set aside here.

6 Contemporary connexive approaches

Soon after Nelson finished his dissertation and published (Nelson 1930), some
other philosophers adopted similar views.
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According to (Baylis 1931), it is true that p implies q iff p is inconsistent
with ¬q, but this is rather a consequence of the definition of implication rather
than the definition itself. We have that p implies q (or else, is subsumed under
q) in case the intensional meaning of q is identical with a part of the intensional
meaning of p.

(Wisdom 1934) criticises Lewis’ definition of consistency, taking sides with
Nelson also on the issue of paradoxes of strict implication.

Duncan-Jones claims to have arrived independently at an analysis of para-
doxes similar to Nelson’s:

The general point of view which I am adopting is much the same
as that of Everett J. Nelson in “Intensional relations”, Mind 1930.
I had already worked out this paper in outline before I discovered
the existence of Nelson’s paper: otherwise the note would have
been based directly on Nelson. I differ from Nelson on one or two
points to be mentioned below. (Duncan-Jones 1935, 70)

Such points are actually not quite minor. Duncan-Jones expresses doubts
about Nelson’s intensional understanding of conjunction and about his ensuing
rejection of conjunctive simplification. To rescue this principle, Duncan-Jones
distinguishes between implying and invoking. We have that p invokes q if
p entails q and p is not a conjunction which would still entail q if one of
its conjuncts were dropped. The paradoxes of strict implication, thus, are
fallacies of equivocation: conjunctive simplification holds for implication but
not for invocation, while antilogism holds for the latter but not for the former.

7 Lewis’s reply to Nelson
Lewis does not reply to Nelson by name. In fact, Lewis rarely publishes explicit
replies to criticisms of either his logical or philosophical views. But we do find
in his work, some discussion and a clear rejection of connexive logic.

Lewis briefly discusses Nelson’s axiom 1.4 in Symbolic Logic (Lewis and
Langford 1951, 157):

The principle (p J q) J (p ◦ q), which might be expected to hold,
does not, in fact, hold without exceptions. There are propositions
which are not consistent with any other propositions; yet such
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propositions have implications. Hence if p J q holds, it requires
the further condition p ◦ p to assure that p is consistent with q.

He also argues against Aristotle’s thesis. He points out that, in his system,
whenever p J q is a theorem, p ∧ ¬q entails its own negation.

In an appendix to the second edition of Symbolic Logic written in January
1959, he acknowledges that “on account of the paradoxes there are many who
doubt that” S2 is the logic of entailment, that it captures the intuitive notion
of deducibility. He points out that there are alternative logics that avoid the
paradoxes but that these all fail to contain certain “indispensable rules of
inference” (Lewis and Langford 1959, 511–512).

As we have said, Lewis does not mention Nelson by name, but he attacks
Nelson’s rejection of the simplification thesis:

If the moon is a planet and not made of green cheese, then the
moon is a planet. But if two premises together imply a conclusion
and the conclusion is false while one of the premises is true, then
the other premise must be false. So if the moon is a planet and also
is not a planet, then the moon is made of green cheese. We need not
dally with a suppositious amendment: “Whatever in the premises
is non-essential to the conclusion is no part of what implies the
conclusion.” This dictum would condemn the syllogism, since in
every syllogism the premises contain information not contained in
the conclusion. (Lewis and Langford 1959, 512)12

In this passage, Lewis is attributing to Nelson the requirement that whatever
information is in the premises must appear in the conclusion. We doubt that
Nelson in fact held this. But if he did, surely the only general principle of
logic that he could accept is the thesis of identity, i.e., p → p, and Lewis says
that this is all that can be justified if we accept the “suppositious amendment”
(ibid.). We interpret Nelson as holding a strong form of real use requirement,
that all the premises need to be used to derive a conclusion, not that all the
information in the premises survives in the conclusion.

At any rate, Lewis clearly rejects connexive logic because he thinks that
simplification is an indispensable rule of inference, and that the corresponding

12Notice the use of antilogism in this passage. The argument is in fact a truncated version of Lewis’s early
independent argument discussed in section 2.
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thesis, (p∧q) → p, is required by a logic that is meant to capture the intuitive
notion of deducibility.

8 Lewis’s and Nelson’s later philosophies of
logic

Although, in his later work, Lewis rejects the core ideas behind connexive
logic, there are some similarities in their philosophies of logic in their later
work.

Nelson writes little formal logic after the mid-1930s, but he does write pa-
pers on the philosophy of logic in that period. In those paper, he retains his
Platonism. In a paper in 1949 he says:

I am convinced that no [...] analysis or criticism can be supported
except by employing assumptions rooted in speculative philosophy.
Thus in the purely abstract fields such as logic and mathematics
we run into the problem of universals .... (Nelson 1949, 610)

In this passage Nelson is stating that intuitions about logical truth has to do
with perceived or understood connections between abstract entities (univer-
sals). Nelson thinks that “acquaintance with instances of qualities or relations
reveals that the essence of qualities and relations involves conformity with
logical laws” (ibid. pp 612–613). The use of the word “acquaintance” would
indicate to Nelson’s readership that he has a position similar to Russell’s the-
ory of acquaintance with universals. At any rate, Nelson holds some version
of platonism in his thesis and still maintains this view twenty years later.

Lewis did not change the formal logic that he accepted after 1930. His
preferred logic remains S2 until the end of his life. But Lewis does change his
philosophy of logic to look a lot like Nelson’s. In a 1935 manuscript, Lewis
says:

Let us begin with the interpretation of p J q, which is intended
to be synonymous with q is deducible from p. We conceive that
all valid deduction takes place through the analysis of meanings or
connotations. Observation of the truth or falsity of propositions
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may, in specific instances, show that one is not deducible from an-
other - a false proposition is never deducible from a true one – but
obviously such examination of truth-values, without analysis of
propositions, can never demonstrate positively that q is deducible
from p. Socrates is a man implies Socrates is an animal because
the connotation of man includes the connotation of animal. Con-
notations are (in the language of the older logic) universals; and
any relation of connotations as such is a universal relation. If q is
deducible from p, this is because analysis of the meanings of the
propositions p and q will reveal a universal relation of connotation
or intension (Lewis and Langford 2014, 46)13

Lewis continues to develop this sort of semantic realism in his published work.
A decade or so later in (Lewis 1946), he develops a more complex theory
of abstract objects as the metaphysical basis of his theory of meaning. In
(Lewis 1951), he treats statements again as expressing universals, that is as
properties of worlds. Thus, in Lewis’s later writings he adopts a metaphysical
realist philosophy of logic similar to Nelson’s.
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1 The conditional systems V, VW, VC
and C2

The system of conditional logic named VC in (Lewis 1973) (but named C1
in Lewis 1971) is currently considered the central system inside the family of
so-called “classical conditional logics”. (Lewis 1973, 130) writes: “In my anal-
ysis of counterfactuals, I officially imposed centering and none of the other
conditions, VC is therefore my official logic for the counterfactual interpreta-
tion”. However, Lewis was not fully satisfied with the various axiomatizations
he found for this system: for this reason he was inclined to prefer an ax-
iomatization whose primitive notion was that of comparative possibility, here
represented by the symbol ≺.

The axiomatization which we will use as a starting point may be found in
(Nute 1980). In what follows A, B, C,... will be (meta)variables for wffs, ¬,
⊃, ∧, ∨ and ≡ will be symbols for the standard truth-functional operators,
while the symbol > will be used for the primitive conditional operator, ><
for conditional equivalence and ⋑ for the dual of >. The relation symbolized
by A ⋑ B will be read as “A is cotenable with B”. The formation rules are
standard. Parentheses will be omitted when no ambiguity arises around wffs
having >, ⋑ or >< as the main operator.

The definitions of the auxiliary operators are:

Def >< A >< B =df A > B ∧ B > A;
Def ⋑ A ⋑ B =df ¬(A > ¬B);
Def □ □A =df ¬A > A;
Def ♢ ♢A =df ¬(A > ¬A);
Def J A J B =df □(A ⊃ B).

The relation of comparative possibility A ≺ B (which will not be used in
the present paper) is defined by Lewis as ♢A ∧ ((A ∨ B) > (A ∧ ¬B)), while
A ≼ B stands for ¬(B ≺ A).

The axiom schemata of VC, according to (Nute 1980, 129), may be for-
mulated as follows:

PC All the tautologies of the truth-functional propositional calculus;
ID A > A;
MOD ¬A > A ⊃ B > A;
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CSO A >< B ⊃ (A > C ≡ B > C);
CV (A > B ∧ A ⋑ C) ⊃ (A ∧ C) > B;
CMP A > B ⊃ (A ⊃ B);
CS (A ∧ B) ⊃ A > B.

The rules are:

MP From ⊢ A and ⊢ A ⊃ B to infer ⊢ B;
RCEC From ⊢ A ≡ B to infer ⊢ C > A ≡ C > B;
RCK From ⊢ (A1 ∧ ... ∧ An) ⊃ B

to infer ⊢ (C > A1 ∧ ... ∧ C > An) ⊃ C > B, for n ≥ 0.
The following rule RCE is derivable as a special case of RCK:

RCE From ⊢ A ⊃ B to infer ⊢ A > B.

The axiom schema CSO expresses a particular feature of any conditional logic
which contains it: the possibility of replacing ><-equivalents in the antecedent
of a conditional. The rule

RCEA From ⊢ A ≡ B to infer ⊢ A > C ≡ B > C

follows from CSO and RCE, since RCE yields the derived rule

RCEq From ⊢ A ≡ B to infer ⊢ A >< B.

It follows that replacement of proved ≡-equivalents is a universally valid rule
in VC. In what follows we shall call a-equivalents any two statements which
can be reciprocally replaced in the antecedent of a conditional via an applica-
tion of CSO or of RCEq. The subsystem of VC which results from removing
axiom CS is called VW. Removing CMP (the so-called Conditional Modus
Ponens) from VW the resulting minimal system is called V. Any conditional
system which has among its rules RCEC and RCEA is called classical in
(Chellas 1975), so V and all its extensions are classical conditional logics.

Lewis showed that the fragment of VW and VC containing only □ and
truth-functional operators is exactly KT, while the modal fragment of V is
the minimal system K. The collapse-formula (Ban) A ⊃ □A is underivable in
all extensions of VC written in the >-language considered in (Lewis 1973), so
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none of these systems is trivial.1 If ⊤ stands for A ∨ ¬A and ⊥ for ¬⊤, the
collapse is however derivable in VC for a second modal operator ⊡ defined by

Def ⊡ ⊡A =df ⊤ > A.

The collapse of ⊡ is a consequence of axiom CS. In fact, putting ⊤ in place
of A in CS the result is (⊤ ∧ B) ⊃ ⊤ > B, so B ⊃ ⊡B. This formula will be
called Ban⊡ . The stronger equivalence B ≡ ⊡B will be called Triv⊡ and is
also derivable in VC, given that ⊤ > B (i.e. ⊡B ) implies ⊤ ⊃ B by CMP,
hence B by PC.

Various versions of the model theory for conditional language have been
proposed in the literature (see for instance Lewis 1971). For our aims the
semantics for conditional systems may be outlined as follows. A V-model is
a 4-ple ⟨W, f, R, V ⟩, where:

(i) W is a non-empty set of possible worlds {a, b, c, ...},

(ii) f is a function from couples of propositions and worlds to sets of worlds
such that, for every proposition A and world i, f(A, i) is a subset of
W which is also a subset of A-worlds, i.e. of worlds where A is true
(intuitively, the set of A-worlds “more similar” to i). The properties of f
are the basic properties of so-called selection functions, as formulated by
(Stalnaker 1968), with the essential difference that the selection function
f here has sets of worlds as its values (set-selection functions) while
Stalnaker asks that f selects a unique world.2

(iii) R is a binary relation on W ;

(iv) if j belongs to f(A, i) then iRj;

(v) V is an evaluation function that is defined in a standard way as far as
1In (Lewis 1973, 121), a trivial system named CA is formulated in a language containing the symbol ≺.

The trivializing schema is A ≺ B ≡ A ⊃ B.
2(Lewis 1971, 75) proposes the following minimal clauses for the definition of (non-centered) set-selection

functions, where A is a sentence and [A] the set of A-worlds:

(a) f(A, i) ⊆ [A] (which means that V (A, j) = 1 at every j in f(A, i));

(b) if f(A, i) ⊆ [B] and f(B, i) ⊆ [A], then f(A, i) = f(B, i);

(c) either f(A ∨ B, i) ⊆ [A] or f(A ∨ B, i) ⊆ [B] or f(A ∨ B, i) = f(A, i) ∪ f(B, i).

We are assuming in what follows that the function f has the properties stated in (a), (b), (c).
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truth-functional operators are concerned and that w.r.t. the >-operator
satisfies the following clause:

(vi) V (A > B, i) = 1 iff V (B, j) = 1 at every j in f(A, i) (this means
that if f(A, i) is ∅ the right part of the equivalence (vi) is vacuously
satisfied: so, in this special case, V (A > B, i) = 1 for every B, so
V (A > ¬A, i) = V (□¬A, i) = 1. On the other hand, if □¬A is true at
i, f(A, i) is ∅; otherwise, if f(A, i) ̸= ∅, by clause (iv) some j exists such
that iRj, so ♢A is true at i);

A VW-model has all the properties (i)-(vi) and furthermore the following:

• (Weak Centering) if V (A, i) = 1 then i ∈ f(A, i).

Weak Centering validates CMP, so its instantiation ¬A > A ⊃ (¬A ⊃ A),
so □A ⊃ A. Then in VW-models the relation R has the property of being
reflexive.

A VC-model has all the properties of VW-models and also the following:

• (Centering) If V (A, i) = 1, then f(A, i) = {i}

which validates axiom CS. Stalnaker’s system C2 has in place of CS the so
called “Conditional Excluded Middle” (CEM):

CEM A > B ∨ A > ¬B.

C2-models are as VC-models with the only difference that the set f(A, i)
is a singleton. As proved by (Lewis 1973), V, VW, VC, C2 are sound and
complete for the above defined semantics.

2 The conditional systems VInt, VInt1 and
VInt1T

We remark that all the schemata used in the above introduced axioma-
tization of VC, with the only exception of Id, are schemata involving two
metavariables. In what follows we will consider three schemata, two of which
contain a single metavariable, which can be used to provide an alternative
axiomatization of VC:

Organon F 26 (3) 2019: 427–445



432 Claudio E. A. Pizzi

V

VInt

VN

VInt1

VW

VInt1T=VC

Figure 1: Converging extensions of V

Int (A ∧ B) ⊃ ♢A > ♢B;
X1 (A ∧ ♢A) ⊃ ♢A >< A;
T □A ⊃ A.

A wff which is equivalent to Int is the schema:

Int+ (A ∧ B) ⊃ ♢A >< ♢B.

The diagram in Figure 1 offers a visualization of the inclusion relation (repre-
sented by the arrow) among six conditional systems with the following names:

VInt = V + Int;
VInt1 = V + Int + X1;
VInt1T = V + Int + X1 + T;
VN = V + N (N : ♢⊤);3
VW = V + CMP;
VC = V + CMP + CS.

The right side of the diagram in Figure 1 is a fragment of the map of con-
ditional logics reproduced in Fig. 5 of (Lewis 1973, 131). Other combinations
of schemata (for instance V + X1) will not be taken here in consideration for
sake of simplicity. In what follows we prove that the systems in the lower side
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of the diagram are distinct systems, or more exactly that each one is properly
included in the next of the sequence. In other words we have to prove that Int
is not a V-theorem, X1 is not a VInt-theorem and that T is not a VInt1-
theorem. The first result is simple since we have at our disposal a soundness
and completeness theorem for V w.r.t. the class of V-models.

Proposition 2.1. Int is not a V-theorem.

Proof. It is enough to prove that Int, i.e. (A ∧ B) ⊃ ♢A > ♢B, is falsified in
a V-model with the following consistent properties: W = {i, j} and for any
formulas A and B, j ∈ f(♢A, i), V (A, i) = V (B, i) = 1, V (B, j) = 0, jRj. In
this model then V (♢B, j) = 0. Since V (♢A, j) = 1 for the properties of f (see
footnote 2, clause a) V (♢A > ♢B, i) = 0. Given that V (A ∧ B, i) = 1, Int has
value 0 at i. Since all V-theorems are valid in all V-models for the soundness
theorem, this amounts to a disproof of Int in V.

In order to reach the other expected results we associate a semantics to
the relevant systems in this way. First we define two properties of V-models
which we call f -Symmetry and Pseudo-centering.

(fS) For every i in W and for every A such that V (A, i) = 1, if j ∈
f(♢A, i), then i ∈ f(♢A, j).

(PsC ) For every i in W , and for every A such that V (A, i) = 1 then, for
every j in f(A, i), f(A, j) = {j}.

A consequence of (fS) is:

(fSo) For every i in W and for every A such that V (A, i) = 1, if j ∈
f(♢A, i), then iRj and jRi.

A consequence of (PsC ) is:

(PsC o) For every i in W , and for every A such that V (A, i) = 1 then, for
every j in f(A, i), jRj.

We prove:

Proposition 2.2. VInt is sound w.r.t. the class of f -symmetrical V-models.

Proof. Suppose that Int has value 0 at some i of some V-model M which is
also f -symmetrical. Then V (A, i) = V (B, i) = 1 and V (♢A > ♢B, i) = 0.
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This means that there is a j belonging to f(♢A, i) such that V (♢A, j) = 1 and
V (♢B, j) = 0. But due to the property of f -symmetry, i ∈ f(♢A, j). By the
properties of V-models, (fS o) implies that jRi. So, given that V (♢B, j) = 0,
B has value 0 at all worlds k such that jRk: thus, given that jRi, V (B, i) = 0
at i, contrary to the supposition that V (B, i) = 1.

One may check by induction on the length of proofs that all VInt-axioms
schemata are valid for this semantics and that the rules preserve validity, so
every VInt-thesis is valid in all V-models which are f -symmetrical.

Proposition 2.3. VInt1 is sound w.r.t. the class of all f -symmetrical and
pseudo-centered V- models.

Proof. In Proposition 2.2 it is proved that Int is valid in the class of f -
symmetrical V-models, so it is a fortiori valid in the class of pseudo-centered
and f -symmetrical models. Since X1 is (A∧♢A) ⊃ ♢A >< A, it is equivalent
to ((A ∧ ♢A) ⊃ (A > ♢A)) ∧ ((A ∧ ♢A) ⊃ (♢A > A)).

First suppose that (A ∧♢A) ⊃ A > ♢A has value 0 at some world i. Then
V (A, i) = 1 and V (A > ♢A, i) = 0. So V (A, j) = 1 and V (♢A, j) = 0 at some
j such that j ∈ f(A, i). By Pseudo-centering, since V (A, i) = 1, this implies
f(A, j) = {j}. But this implies that jRj and V (A, j) = 1. It follows that
♢A is true at j: contradiction. Secondly we consider (A ∧ ♢A) ⊃ ♢A > A.
Suppose there is an i such that A∧♢A has value 1 in i and ♢A > A value 0 at
i. This means that there is a j such that j ∈ f(♢A, i), ♢A has value 1 and A
value 0 at j. By Pseudo-centering, given that V (♢A, i) = 1 and j ∈ f(♢A, i),
f(♢A, j) = {j}. Now f -symmetry states that, for every i ∈ W and for every A
s.t. V (A, i) = 1, if j ∈ f(♢A, i), then i ∈ f(♢A, j). But f(♢A, j) is {j}. Thus
i belongs to {j}, which means that i = j. Since A has value 0 at j, this means
that at i A has value 1 by hypothesis and also value 0, which is impossible.
So both Int and X1 are valid in all pseudo-centered and f -symmetrical V-
models. The expected result follows from standard induction on the length of
proofs.

The proof that the systems VInt and VInt1 are distinct is as follows.

Proposition 2.4. VInt1 and VInt are non-equivalent systems.

Proof. It is enough to show that X1 is not a VInt-thesis. Let M be a V-
model with the following consistent properties. W = {i, j}; V (A, i) = 1;
V (A, j) = 0; iRi; j ∈ f(♢A, i) and i ∈ f(♢A, j). It is straightforward to see
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that M is f -symmetrical, so it is a VInt-model. Furthermore V (♢A, j) =
1 by the properties of f . Given that V (♢A, j) = 1 and V (A, j) = 0, so
V (♢A > A, i) = 0. Also, given that iRi and V (A, i) = 1, V (♢A, i) = 1. So
V ((A ∧♢A) ⊃ ((♢A > A), i) = 0 in M and V ((A ∧♢A) ⊃ (♢A >< A), i) = 0
in M . Since all VInt-theses are valid in all f -symmetrical models, X1 is not
a VInt-thesis.

The next result concerns the distinction of VInt1 and VInt1T.

Proposition 2.5. VInt1 and VInt1T are non-equivalent systems.

Proof. It is enough to show that the axiom-schema T is underivable in VInt1.
Let us consider a model M with the following properties: W = {i}, f(A, i) =
∅, V (A, i) = 1. Since f(A, i) = ∅, due to the properties of selection functions,
no j exists such that iRj, so ¬♢A has value 1 at i. Consequently f(♢A, i) is
also ∅: otherwise ♢A would have value 1 at some j s.t. iRj, so at i (given that
W = {i}), but this contradicts V (¬♢A, i) = 1. Since f(♢A, i) = f(A, i) = ∅,
the conditions “if k ∈ f(♢A, i), then i ∈ f(♢A, k)” and “for every j ∈ f(A, i),
f(A, j) = {j}”, jointly required for VInt1-models, are vacuously satisfied.
Thus M is a V-model which is f -symmetric and pseudo-centered, so it is a
VInt1-model. Since A and ¬♢A have both value 1 at i, V (A ⊃ ♢A, i) = 0. If
T were a VInt1-thesis, A ⊃ ♢A would be also such, which is impossible.

VInt1 does not even have as a subsystem any system which contains the
deontic axiom-schema N: ♢⊤.

Proposition 2.6. ♢⊤ is not a VInt1-thesis.

Proof. The same model M built in Proposition 2.5 may be used to prove that
□A and ¬♢A have both value 1 in M , so the formula □A ⊃ ♢A is falsified in
M . Since □A ⊃ ♢A is V-equivalent to ♢⊤, ♢⊤ cannot be a VInt1-thesis.

The relation between the systems represented on the upper side of the
diagram of Figure 1 and the ones on the right side are as follows. We call
incomparable two systems X and Y when X is not contained in Y and Y is
not contained in X.

Proposition 2.7. VN is incomparable with VInt.
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Proof. Since N is ♢⊤, it cannot be derived in VInt, otherwise it would deriv-
able in VInt1, which is excluded by Proposition 2.6. On the other hand,
VInt is not a subsystem of VN. By Proposition 2.1 Int is not a V-theorem
and the model M built in the proof of Proposition 2.1 is a serial one, where
seriality is the property by which, for every world m in M there is a world n
such that mRn. By a well-known result, N is valid in all serial models, so it
is valid in M . So Int is falsified in a model which satisfies all VN-theorems,
so it is not a VN-thesis.

Proposition 2.8. VW is incomparable with VInt1.

Proof. From the axiom CMP, i.e. A > B ⊃ (A ⊃ B), it follows by instan-
tiation ¬A > A ⊃ (¬A ⊃ A), so □A ⊃ A, i.e. the schema called T. But
we already proved that T is underivable in VInt1, so VW is not a sub-
system of VInt1. On the other hand Int, i.e., (A ∧ B) ⊃ ♢A > ♢B, is
underivable in VW. A VW-countermodel M to Int may be built as follows.
W = {i, j, k}, V (A, i) = V (A, k) = V (B, i) = 1 and V (B, j) = V (B, k) = 0;
j ∈ f(♢A, i); jRk. Furthermore i ∈ f(A, i), i ∈ f(B, i), j ∈ f(¬B, j),
k ∈ f(A, k), k ∈ f(¬B, k). From this definition it follows that M is a VW-
model since it has the property of Weak-Centering (i.e. that, for every A
and every h, if V (A, h) = 1, h ∈ f(A, h)). It also follows from the defini-
tion that iRi, jRj, kRk, i.e. total reflexivity. Since jRk and V (A, k) = 1,
V (♢A, j) = 1. But V (♢B, j) = 0 since jRk, jRj and B has value 0 in both
k and j. Given that j ∈ f(♢A, i), it turns out that A ∧ B has value 1 while
♢A > ♢B has value 0 at i. So M is a VW-countermodel for Int and Int
cannot be a VW-theorem.

3 The deductive equivalence between
VInt1T and VC

We now may prove the deductive equivalence between VInt1T and VC.
For the desired result we need the following two Lemmas.
Lemma 3.1. RB: ♢A ⊃ (A > B ⊃ A ⋑ B) (Restricted Boethius) and PCI:
□¬A ⊃ A > B(Paradox of Conditional Implication) are V-theorems.

Proof. Assume by Reductio the negation of (RB), i.e. ♢A∧A > B ∧A > ¬B.
This implies, in V, ♢A ∧ (A > (B ∧ ¬B)), ♢A ∧ (A > ⊥), so ♢A ∧ ¬♢A:
contradiction. Then RB is a V-theorem.
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(PCI) By rule RCK, ⊢PC ¬A ⊃ (A ⊃ ⊥) implies ⊢ A > ¬A ⊃ A > (A ⊃
⊥). So again by RCK, by Id and by Transitivity of ⊃, ⊢ A > ¬A ⊃ A > ⊥.
⊢PC ⊥ ⊃ B implies, again by RCK, ⊢ A > ⊥ ⊃ A > B. So, by Transitivity
of ⊃ and by Def □, □¬A ⊃ A > B.

Proposition 3.2. In VInt1T X1 is equivalent to X1o: A ⊃ ♢A >< A.

Proof. A theorem of VInt1T is A ⊃ ♢A, so (A ∧ ♢A) ≡ A. Then X1, i.e.
(A ∧ ♢A) ⊃ (♢A >< A), by Replacement of Material Equivalents turns out
to be equivalent to A ⊃ ♢A >< A.

Proposition 3.3. For any formula A, A is a VInt1T-thesis iff A is VC-
thesis.

Proof. (=⇒) All the three wffs which are axioms schemata of VInt1T are
theorems of VC. In fact, (a) T: □A ⊃ A and its variant A ⊃ ♢A follow from
CMP. (b) An instantiation of CS is (♢A ∧ ♢B) ⊃ ♢A > ♢B but, given the
KT-theorem (A ∧ B) ⊃ (♢A ∧ ♢B), by transitivity of ⊃ we reach (A ∧ B) ⊃
♢A > ♢B, i.e. Int. (c) An instance of CS is (A ∧ ♢A) ⊃ ♢A > A. Since
⊢ A > ♢A follows from ⊢ A ⊃ ♢A by RCE, it is straightforward to derive
(A ∧ ♢A) ⊃ ♢A >< A, i.e. X1.

(⇐=) The following is a syntactical proof of CS in VInt1T.

1. A ⊃ ♢A >< A X1o

2. B ⊃ ♢B >< B X1o

3. (A ∧ B) ⊃ ♢A >< A (1), ⊢ (A ∧ B) ⊃ A, PC
4. (A ∧ B) ⊃ ♢B > B (2), PC
5. A > B ⊃ (A ⋑ C ⊃ (A ∧ C) > B) CV, PC
6. ♢B > B ⊃ (♢B ⋑ ♢A ⊃ (♢B ∧ ♢A) > B) (5), ♢B for A, ♢A for C
7. (A ∧ B) ⊃ (♢B ⋑ ♢A ⊃ (♢A ∧ ♢B) > B) (4), (6), PC
8. ♢A ⊃ (A >< B ⊃ A ⋑ B) RB, PC
9. ♢♢A ⊃ (♢A >< ♢B ⊃ ♢A ⋑ ♢B) (8), ♢A for A, ♢B for B
10. (A ∧ B) ⊃ ♢A >< (♢A ∧ ♢B) Int, ⊢V (♢A >< (♢A ∧ ♢B)) ≡ ♢A >< ♢B
11. ♢♢A ⊃ ((A ∧ B) ⊃ ♢A ⋑ ♢B) (9), Int, PC
12. ♢♢B ⊃ ((A ∧ B) ⊃ ♢B ⋑ ♢A) (11), B for A and A for B, PC
13. ♢♢B ⊃ ((A ∧ B) ⊃ (♢A ∧ ♢B) > B) (12), (7), PC
14. ♢♢B ⊃ ((A ∧ B) ⊃ ♢A > B) (13), (10), CSO, PC
15. ♢♢B ⊃ ((A ∧ B) ⊃ A > B) (14), (3), CSO
16. ¬♢♢B ⊃ ((A ∧ B) ⊃ C) ⊢KT □□¬B ⊃ ¬B, ⊢PC ¬B ⊃ ((A ∧ B) ⊃ C)
17. ¬♢♢B ⊃ ((A ∧ B) ⊃ A > B) (16), A > B for C
18. (A ∧ B) ⊃ A > B (17), (15), PC
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It remains to be proved that CMP, i.e. A > B ⊃ (A ⊃ B), is a the-
orem of VInt1T. From RB: ♢A ⊃ (A > B ⊃ A ⋑ B) (See Lemma 3.1)
and CS: (A ∧ B) ⊃ A > B one obtains ♢A ⊃ ((A ∧ B) ⊃ A ⋑ B), so
♢A ⊃ (A > ¬B ⊃ (A ⊃ ¬B)) and obviously

(*) ♢A ⊃ (A > B ⊃ (A ⊃ B)).

But ¬♢A ⊃ (¬A ∨ B) is a KT-thesis, so a fortiori:

(**) ¬♢A ⊃ (A > B ⊃ (A ⊃ B))

is such. Then by (**) and (*) A > B ⊃ (A ⊃ B), i.e. CMP, follows in a
straightforward way.

As proved by Lewis, VC is sound and complete w.r.t. the class of all cen-
tered models. A simple semantic remark helps to understand the equivalence
between the two systems VC and VInt1T.

Proposition 3.4. Any V-model M is centered if and only if M is pseudocen-
tered, reflexive and f -symmetric.

Proof. (a) It is easy to see that every centered V-model M is a fortiori pseudo-
centered, reflexive and f -symmetric. Reflexivity follows obviously by Center-
ing. Furthermore, if V (A, i) = 1, by Reflexivity V (♢A, i) = 1, so by Centering
f(♢A, i) = {i} : hence f(A, i) = f(♢A, i), given that both are identical to
{i}. Hence if j ∈ f(A, i), j = i.

The two properties fS and PsC follow in the following way.
(fS) For every i in W such that V (A, i) = 1, if j ∈ f(♢A, i), by the

proved identity f(A, i) = f(♢A, i), j ∈ f(A, i); then by the identity j = i,
i ∈ f(♢A, j). So, supposing that V (A, i) = 1, if j ∈ f(♢A, i), i ∈ f(♢A, j).

(PsC ) For every i in W , if V (A, i) = 1 then, being proved by the Centering
property that f(A, i) = {i}, it follows that i = j for every j s.t. j ∈ f(A, i).
So, if V (A, i) = 1, by substitution of j to i f(A, j) = {j}, which is the property
of Pseudo-centering.

b) It may be proved that every pseudo-centered f -symmetric reflexive
model is a centered model. Suppose V (A, i) = 1. Then by Reflexivity
V (♢A, i) = 1. One can prove that f(♢A, i) is not ∅: f(♢A, i) = ∅ in fact
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would imply the truth at i of ♢A > C for every C, so the truth of ♢A > ¬♢A,
of □¬♢A (by Def >) and of □□¬A, so by reflexivity the truth of ¬A at i, which
is the negation of the hypothesis V (A, i) = 1. Then there is a j ∈ f(♢A, i),
and in such j ♢A has value 1. Now Pseudo-centering holds for every wff, so
also for ♢A. Hence, for every i in W , and for every A such that V (♢A, i) = 1
we have, for every j in f(♢A, i), f(♢A, j) = {j} and we know that there is
at least one j of this kind. And, given that j ∈ f(♢A, i) implies i ∈ f(♢A, j)
by f -symmetry, i ∈ {j} and j = i. Since f(♢A, j) = {j}, by substitution
of identicals f(♢A, i) = {i}. Since A is true at i, it is also true at every
world of f(♢A, i), so ♢A > A is true at i. Given that A > ♢A is true at
i and at all the possible worlds of any reflexive model, then ♢A >< A has
value 1 at i. This means, by property b) of the function f (see section 1),
that f(A, i) = f(♢A, i). Given that f(♢A, i) = {i}, we conclude that, if
V (A, i) = 1, f(A, i) = {i}, which expresses the condition of Centering.

4 CS as a source of partial trivialization of
modal operators

The two basic laws of central systems of classical conditional logics, CMP
and CS, have been object of criticism by various scholars. Conditional Modus
Ponens has been criticized by (McGee 1985) and is not a theorem of the system
Å in (Åqvist 1973). The reason is that if A > B is interpreted by something
as ∗A J B (where ∗ is the so called “circumstantial operator” indicating
the conjunction of A with a tacitly understood antecedent), an acceptable
version of conditional Modus Ponens would be not A > B ⊃ (A ⊃ B) but
A > B ⊃ (∗A ⊃ B): but the latter formula is inexpressable in a language
having > as the only primitive. As far as CS is concerned, suffice it to mention
(von Kutschera 1974) and (Gundersen 2004) just to quote only two papers in
which the conditional systems under analysis omit CS. The principle has been
criticized also in (Bennett 1974) and (Bigelow 1976). What we want to stress
in this paper is that the implausibility of CS, and more generally of system
VC, is due to the fact that CS is a source of a partial or full trivialization
of some non-truthfunctional operators definable in terms of >. As observed
at the beginning, if the necessity operator is defined as ⊡A =df ⊤ > A, the
collapse-formula Triv⊡: ⊡A ≡ A is derivable in VC but not in the weaker
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system, being a consequence of the introduction of CS.
It is of some interest to remark that Def ⊡ and Def □ allow for a different

axiomatization of VC consisting in two simple axiom-schemata with only one
metavariable. Let us call V⊡□ the system which is obtained by extending
the axiomatic basis of V with the definitions of ⊡ and □ and the following
two schemata:

Ban⊡ A ⊃ ⊡A;
T □A ⊃ A.

Then we may prove the following metatheorem.

Proposition 4.1. V⊡□ and VC are deductively equivalent systems.

Proof. The rules of the two systems and the axioms of V are common to V⊡□
and VC, so it is enough to do these two steps.

(=⇒) We prove that CS and CMP are derivable in V⊡□. As for CS:

1. A ⊃ ⊤ > A Ban⊡ , Def ⊡
2. A > ⊤ PC, RCE
3. A ⊃ ⊤ >< A (1), (2), PC
4. B ⊃ ⊤ >< B (3), B for A
5. (A ∧ B) ⊃ (⊤ >< B ∧ T >< A) (3),(4), Theorema Praeclarum
6. ⊤ >< A ⊃ (⊤ > B ≡ A > B) CSO, ⊤ for A, A for B, B for C
7. (⊤ >< A ∧ ⊤ >< B) ⊃ A > B (6), PC, ⊢ B > ⊤ ((2), B for A)
8. (A ∧ B) ⊃ A > B (5),(7), PC

As for CMP: The same proof as for the wffs (*) and (**) used in the proof of
Proposition 3.3, which are steps to derive CMP from T and CS.

(⇐=) We have already shown that the schema Ban is derivable in VC,
while T is a trivial consequence of CMP.

Proposition 4.1 implies that Ban⊡: A ⊃ ⊡A and Triv⊡: A ≡ ⊡A are
equivalent in V⊡□, since ⊡A ⊃ A easily follows from CMP.

Notice that in systems having J as primitive (see, for instance, S1–S5
introduced in Lewis and Langford 1932) □A may be indifferently defined as
¬A J A and (A ∨ ¬A) J A. However, in conditional logic the distinction
between ⊡A and □A depends, via Def ⊡ and Def □, on the distinction be-
tween (A ∨ ¬A) > A e ¬A > A. The reason why such two formulas cannot
be logically equivalent in classical conditional logics is that there is no room
in them for the so-called Simplification of Disjunctive Antecedents
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SDA (A ∨ B) > C ⊃ B > C.

Thanks to SDA, in fact, (A ∨ ¬A) > A (i.e., ⊡A) would imply ¬A > A
(i.e., □A), while the converse implication follows from MOD. But the fail-
ure of SDA is a weak point of classical conditional logic. (Nute 1980, 40 ff.)
stresses with a different argument the incompatibility between SDA and CS,
and introduces a class of non-standard conditional logics in which the first,
but not the latter theorem, is allowed. As is well-known, Lewis has defended
CS by claiming that conditional logic is interested in truth conditions and
not in relevance conditions between the clauses. The problem of the “discon-
nection” of the clauses is traditionally seen as a weak point of the material
conditional. This helps to understand a second kind of trivialization yielded by
CS in conjunction with CMP: in fact, their combination leads one to prove the
equivalence between classical conditionals with a true antecedent and material
conditionals with a true antecedent.

A conditional which is stated in conjunction with the truth of its an-
tecedent may be read as a “since” conditional or, as (Goodman 1947) says,
a factual conditional. Thanks to CMP, the factual conditional A ∧ A > B
entails (A ∧ B) ∧ A > B and vice versa. Thanks to CS, A ∧ B entails A > B,
so (A ∧ B) ∧ A > B turns out to be equivalent to A ∧ B. So we reach soon
the equivalence

(◦) A ∧ B ≡ A ∧ (A > B)

(◦) states that any factual conditional collapses on the conjunction of its
clauses. Furthermore, given that A ∧ B is PC-equivalent to A ∧ (A ⊃ B), we
have the collapse of factual material conditionals on factual classical condi-
tionals, that is a special case of trivialization

(◦◦) A ∧ (A ⊃ B) ≡ A ∧ (A > B).

In the present paper attention has been given to a third kind of trivializiation.
Let us recall that

X1o A ⊃ ♢A >< A
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follows from CS in the system VC and that it entails CS in the system
VInt1T. X1o asserts that if A is true, A is a-equivalent with its own possibil-
ity. Let us read again A ∧ (A > C) as “Since A, C” and let us suppose that
A ∧ (A > C) is true (e. g. “Since it rained, streets are wet”). A ∧ (A > C)
implies A and, by X1o, A implies ♢A >< A. Thanks to CSO, then, from
A > C we derive ♢A > C. And, given that we have at our disposal also
the law A ⊃ ♢A, we conclude that the conjunction A ∧ (A > C) entails the
conjunction ♢A ∧ ♢(A > C). More formally, we derive the following formula:

(◦ ◦ ◦) (A ∧ (A > C)) ⊃ (♢A ∧ (♢A > C)).

Following the proposed interpretation of A and C, then the consequent of
(◦ ◦ ◦) says “streets are wet since it is logically possible that it rained”, i.e. is
something which is intuitively false, while the antecedent A∧(A > C) appears
to be intuitively true. One might be willing to remark that this result is simply
an apparent anomaly, since the background conception of conditionals which
inspired Stalnaker-Lewis systems is divisionist. In other words the background
theory claims that there are two kinds of conditionals (roughly: the indicative
and the counterfactual) and the truth-conditions for the indicative conditional
are the same as the ones for the material conditional. However, the preceding
remark should face the content of the following metatheorem:

Proposition 4.2. In VC the thesis X1o: A ⊃ ♢A >< A is logically equivalent
to X1∨: ♢A >< A ∨ ♢¬A >< ¬A.4

Proof. The proof consists in proving the two sides of the equivalence which
we call here (ia) and (ib). Let us recall that VC contains VW, hence the
□-logic KT and also the theorems A ⊃ ♢A and A > ♢A.

4♢A >< A ∨ ♢¬A >< ¬A should not be confused with □A >< A ∨ □¬A >< ¬A. One may prove that
□A >< A ∨ □¬A >< ¬A is equivalent to ¬A ⊃ □A >< A, and the latter formula may be proved to be
equivalent to the two-metavariable wff A ⊃ (B > (A > B)), which is not VC-valid (the proofs will not be
given here).
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(ia)

1. ⊢ ♢A >< A ∨ ♢¬A >< ¬A X1∨
2. (♢A ∧ ¬A) ⊃ ¬(♢A > A) CMP, PC, ♢A for A, A for B
3. (♢A ∧ ¬A) ⊃ ¬(♢A >< A) (2), Def ><, ⊢ A > ♢A
4. (♢A ∧ ¬A) ⊃ ♢¬A >< ¬A (3), (1), PC
5. ¬♢A ⊃ ♢¬A >< ¬A MOD, ♢¬A for B, ¬A for A, ⊢ ¬A > ♢¬A
6. (¬♢A ∧ ¬A) ⊃ ♢¬A >< ¬A (5), PC
7. ¬A ⊃ ♢¬A >< ¬A ⊢KT ((¬A ∧ ♢¬A) ∨ (¬A ∧ ♢A)) ≡ ¬A,

(4), (6), PC
8. A ⊃ ♢A >< A (7), ¬A for A, PC

(ib)

1. ⊢ A ⊃ ♢A >< A X1o

2. ¬A ⊃ ♢¬A >< ¬A (1), ¬A for A
3. ((A ⊃ B) ∧ (C ⊃ D)) ⊃ ((A ∨ C) ⊃ (B ∨ D)) PC
4. (A ∨ ¬A) ⊃ (♢A >< A ∨ ♢¬A >< ¬A) (1), (2), (3) (¬A for C, ♢A >< A

for B, ♢¬A >< ¬A for D), MP
5. ♢A >< A ∨ ♢¬A >< ¬A (4), ⊢ ⊤, MP

As a consequence of Proposition 4.2, an axiom system which is equiva-
lent to VInt1T (so to VC and to V⊡□) is the following, which we call here
VInt1To:

Int (A ∧ B) ⊃ ♢A > ♢B;
X1∨ ♢A >< A ∨ ♢¬A >< ¬A;
T □A ⊃ A.

Now the disjunction X1∨ implies that at least one of the two statements A
and ¬A is a-equivalent with its own possibility. This statement does not make
any assertion containing factual conditionals. Thanks to X1∨ we are able to
perform in VC the following proof. In order to simplify notation, we recall
that ♢¬A ∧ ♢A means that A is contingent and is symbolically represented
usually by ∇A.
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1. (A > B ∧ A ⋑ C) ⊃ (A ∧ C) > B CV
2. ♢¬A > ¬A ⊃ ((♢¬A ⋑ ♢A) ⊃ (♢¬A ∧ ♢A) > ¬A) (1) ♢¬A for A, ♢A for C,

¬A for B, PC
3. ♢A >< A ∨ ((♢¬A ⋑ ♢A) ⊃ (♢¬A ∧ ♢A) > ¬A)) X1∨, (2), MP
4. ((♢¬A ⋑ ♢A) ∧ (♢¬A ∧ ♢A) ⋑ A) ⊃ (♢A >< A) (3), ⊢ A ∨ B ≡ ¬B ⊃ A, Def ⋑
5. ((♢¬A ⋑ ♢A) ∧ (∇A ⋑ A)) ⊃ ♢A >< A (4), Def ∇
6. (♢¬A ∧ ♢A) ⊃ (♢¬A ⋑ ♢A) CMP, PC
7. (∇A ∧ (∇A ⋑ A)) ⊃ ♢A >< A (6), (5), PC, Def ∇

How can we read (7)? It asserts the if A is contingent and its contingency
is cotenable with A, then A and ♢A are a-equivalent. But most actual and
possible facts of real life have the property stated in the antecedent of this
implication. So, given that raining is a contingent fact and that such property
does not exclude rain, raining is a-equivalent to its own possibility. Given
the mentioned premises, as a result of a-equivalence we may then replace A
and ♢A in the antecedents of any appropriate conditional. In many cases
this replacement however leads to bizarre conclusions. For instance, we can
imagine a scenario in which yesterday it did not rain (¬A) but rain was clearly
a possibility (♢A). Now let us consider the true counterfactual:

(i) if it had rained, streets would have been wet (A > W )

and from (i) and the other premises we conclude, exploiting replacement of
a-equivalents

(ii) if rain had been a possibility, streets would have been wet (♢A > W )

(ii) is not only false but, thanks to the true premise ♢A, it allows to go further:
we may conclude by CMP ♢A ⊃ W and by standard Modus Ponens, from
♢A, that also W is true, i.e. that streets were wet yesterday: very strange
conclusion since among our premises there is the fact that yesterday it did not
rain.
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. . . if tense logic is haunted by the myth that whatever exists at
any time exists at all times, ordinary modal logic is haunted by
the myth that whatever exists exists necessarily. (Prior 1957, 48)

1 A ‘puzzle of possible non-existence’

(Fine 2005, 328) sets out ‘a familiar puzzle concerning possible non-existence
... by means of the following argument’:

(1) It is necessary that Socrates is a man.1

(2) It is possible that Socrates does not exist.

(3) Therefore it is possible that Socrates is a man and does not exist.

Now (Fine 2005, 329) remarks that ‘the argument appears to be sound . . . yet
its conclusion is unacceptable’. According to (Fine 2005, 329) the argument
has the following valid logical form: □p, ♢q : ♢(p & q).

2 Two mooted, but deficient, responses

(Fine 2005, 329) rejects ‘two responses to the puzzle that are implicit in the
literature’. The first response, ‘which’, according to (Fine 2005, 329), ‘derives
from the framework of Prior’s system Q’, employs a modal logic with truth-
value gaps. (Fine 2005, 329) continues that by its lights ‘any proposition

1The sortal involved in the predicate ‘is a man’ is, in one sense (namely that in which a boy is not a
man), a phased sortal rather than a substance sortal. (On the distinction, see, e.g., Wiggins 2001, 30.) In
his discussion, however, Fine is concerned with the first sense of the noun ‘man’ listed in the Oxford English
Dictionary: ‘A human being, irrespective of age or sex’. In order to engage with his discussion without
tampering with his terminology, we follow him in this. All uses of ‘man’ are to be taken to involve a substance
sortal, rather than a phased one. Also, unlike Fine, when we evaluate the truth values of statements about
Socrates, we will suppose (in order to avoid unnecessary complexities and philosophical commitments) that
the time of evaluation is one at which Socrates is alive.
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concerning an object is taken to be neither true nor false in any world in
which the object does not exist’.2 This gives rise to two notions of necessity.
Where A is any truth-bearer, it is weakly necessary that A if and only if there
is no possible world at which A is false. It is strongly necessary that A if and
only if A is true at every possible world.3 The Priorian response puts this
distinction to use as follows. The argument from (1) and (2) to (3) is valid
so long as the modalities are read weakly throughout. When we convince
ourselves that (1) and (2) are true and that (3) is nevertheless false, this is
because we slide from a weak reading of the modalities in (1) and (2) to a
strong reading in (3). Read that way, the argument is invalid.

The second response, which (Fine 2005, passim) calls ‘standard’, and which
might equally well be called ‘Kripkean’, invokes a distinction between ‘qual-
ified’ and ‘unqualified’ necessity. (See Kripke 2011, 3, on weak necessity.) A
statement of the form ‘Fa’ is unqualifiedly necessary if and only if it is true in
all possible worlds.4 It is qualifiedly necessary that Fa if and only if it is un-
qualifiedly necessary that if a exists, then Fa. This is applied to the argument
from (1) and (2) to (3) as follows. The necessity involved in (1) is qualified.
The possibility involved in (2) is unqualified. (3) is then invalidly concluded,
with the sense of possibility involved in (3) being the unqualified sense. For
this conclusion to follow, the sense of necessity involved in (1) would need
to be the unqualified sense, which it cannot be if it is not necessary (in the
unqualified sense) that Socrates exists. It is held that it is not an unqualified
necessity that Socrates exists.

We agree with (Fine 2005, 330–4) that both the Priorian and the stan-
dard responses to the ‘puzzle’ are inadequate, not only as responses to the
‘puzzle’ but as philosophies of modality. Crucially, we agree with Fine that
both responses are unable to deny ‘that someone who accepts the necessity
that Socrates is a man is thereby committed to accepting the necessity that
Socrates exists’ (Fine 2005, 331). We take it that this is a problem for the
Priorian and standard accounts because it means that they fail to deliver on

2In order to avoid commitment to propositions, this could be reformulated as follows: a statement is neither
true nor false if it contains an empty name.

3Appeal to possible worlds is not essential here. These notions can be reformulated as follows. It is weakly
necessary that A if and only if it is absolutely impossible that A is false. It is strongly necessary that A if
and only if it is absolutely impossible that A is not true. If there are truth-value gaps, then weak necessity
so formulated is entailed by, but does not entail, strong necessity so formulated. The definitions of modal
notions here are not, of course, reductive. It is questionable whether the appeal to possible worlds really has
an advantage, in this respect, over a position that views modality as primitive.

4Fine formulates this in terms of propositions, not statements.
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their philosophical desideratum that it is in no sense true that ‘whatever exists
exists necessarily’. (In the case of the standard account, see further McLeod
2008.)

Let us show why Fine’s critique of the Priorian and standard responses to
the ‘puzzle’ is correct.

Let ‘E’ be an existence predicate, ‘□W ’ be an operator for Priorian weak
necessity, ‘□S’ be an operator for Priorian strong necessity, ‘□Q’ be an op-
erator for standard qualified necessity and ‘□U ’ be an operator for standard
unqualified necessity.

Let us first demonstrate the problem for the Priorian approach. Suppose
that □W Fa & ¬□SFa. It follows from the latter conjunct that there is a
possible world at which it is not true that Fa. It follows from the first conjunct
that there is no possible world at which it is false that Fa. From these two
consequences of the conjunction, it follows that there is a possible world at
which it is neither true nor false that Fa. At that world, it is neither true nor
false that Ea. So, it is not the case that □SEa. On the other hand, it follows
that □W Ea. This is because there is no world at which it is false that Ea,
since the truth or falsehood of a statement at a world depends upon the non-
emptiness, in that world, of the singular terms it contains. On the Priorian
approach, then, it is necessary that Ea in just the same sense in which it is
necessary that Fa. This is a problem for the Priorian approach because, as is
clear from the words of Prior used as this article’s epigraph, Prior intended to
reject the idea that there is a sense in which concrete objects exist necessarily.

The standard approach faces the same difficulty. Suppose that □QFa &
¬□UFa. It follows from the latter conjunct that there is a possible world at
which it is false that Fa. It follows from the first conjunct, by the definition
of qualified necessity, that there is no possible world at which it is false that
¬Ea ∨ Fa. From these two consequences of the conjunction, it follows that
there is a possible world at which it is false that Ea. So, it is not the case
that □UEa. On the other hand, it follows that □QEa. This is because there
is no world at which it is false that ¬Ea ∨ Ea. On the standard approach,
then, it is necessary that Ea in just the same sense in which it is necessary
that Fa. At least for Kripke, the originator of the standard approach, this
is a problematic result. In a piece invoking weak necessity, (Kripke 2011, 15,
note 11), Kripke is evidently committed to rejecting the idea that there is any
sense in which it may correctly be said that whatever exists exists necessarily.
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3 Fine’s response

3.1 Matters worldly and unworldly

(Fine 2005, 321) contends that there is a distinction, analogous to ‘a distinc-
tion between tensed and tenseless sentences’, between worldly and unworldly
sentences. On the back of this distinction, Fine alleges that the sorts of truths
normally (and properly) regarded as necessary branch into two mutually ex-
clusive kinds: ‘the necessary truths proper . . . and the transcendent truths’
(Fine 2005, 321). Moreover, there are necessary existents, some of which are
‘necessary existents proper’ and others of which are ‘transcendental existents’
(Fine 2005, 321).

The suggestion is not that there are transcendent truths and transcen-
dental existents over and above the necessary truths and necessary existents
alleged to exist by some necessity-friendly metaphysicians. Rather, it is that
necessity-friendly metaphysics usually overlooks some subtleties that are use-
ful (and perhaps even required) for solving modal/existential puzzles and that
are independently plausible (Fine 2005, 322, 328).

Let us set out Fine’s distinctions and then turn to his attempt to apply
them to the supposed modal/existential puzzle.

A truth-apt sentence that is not what Fine calls a ‘hybrid sentence’ is
tensed if and only if ‘it can properly be said to be true or false at a time’ (Fine
2005, 322). Otherwise, it is tenseless. Fine’s examples of tenseless sentences
(Fine 2005, 322) are ‘Socrates is a man’ and ‘Socrates is self-identical’; his
example of a tensed sentence is ‘Socrates does not exist’. The predicates ‘is a
man’ and ‘is self-identical’ are in turn classified as tenseless, ‘while a predicate
such as “exists” is tensed’ (Fine 2005, 322).

Now, says Fine, given that we have the distinction between tensed and
tenseless sentences, and so between tensed and tenseless truths, we can make
‘a corresponding distinction between sempiternal and eternal truths, a sem-
piternal truth being a tensed sentence that is always true and an eternal truth
being a tenseless sentence that is true simpliciter.’ In ‘a restricted sense of
truth-at-a-time’ (Fine 2005, 323), only sentences true at some times and false
at others, plus sempiternal truths, are true-at-a-time. In ‘an extended sense
of truth-at-a-time’ (Fine 2005, 323) tenseless truths can be taken to be true
at all times. The tenseless truths then qualify as being true-at-a-time, since
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truth at all times entails, given that there are times, truth at some times.
On the extended conception of truth-at-a-time, ‘an eternal truth will be true
regardless of the time, i.e. regardless of how things are at the time, while a
sempiternal truth will be [true] whatever the time, i.e. however things are at
the time’ (Fine 2005, 323). By way of examples, (Fine 2005, 323–4) remarks
that ‘If the sun will always shine, then “the sun will shine” will be true at
any given time because of how things are at that time . . . while the . . . truth
of “Socrates is [self-]identical” will not depend . . . upon some ongoing feature
of the universe’.

Let us now move from the tensed/tenseless distinction to the distinction
Fine wishes to draw, by analogy with it, between worldly and unworldly mat-
ters. A truth-apt sentence that is not one of Fine’s ‘hybrid sentences’ is worldly
if and only if it depends for its truth-value ‘upon the worldly circumstances’
(Fine 2005, 321). Otherwise, it is unworldly. Among the truths that Fine
takes to be normally and rightly regarded as necessary by philosophers, the
necessary truths are true whatever the worldly circumstances, whereas the
transcendental truths are true regardless of the worldly circumstances (Fine
2005, 324). Fine provides ‘Socrates is self-identical’ as an example of a truth
that is unworldly and transcendental.5 Earlier, it was cited by him as an
example of a tenseless truth. In contrast with transcendental truths, neces-
sary truths like ‘Socrates exists or does not exist’ depend upon the worldly
circumstances. The example is a disjunction, and a disjunction depends for
its truth on the worldly circumstances if and only if each of the disjuncts de-
pends for its truth on the worldly circumstance (Fine 2005, 324, 326); each
of ‘Socrates exists’ and ‘Socrates does not exist’ is a purely worldly sentence.
Fine is supposing that if a set S contains only worldly sentences, then any
compound formed only from elements of S and truth-functional operators is
also a worldly sentence. This entails that a worldly atomic sentence makes any
truth-functional compound containing finitely many instances of that sentence
and no other atomic sentences worldly too.

Fine’s next step is to propound an ‘extended’ sense of truth-at-a-world
to parallel his earlier ‘extended’ sense of truth-at-a-time. Just as there he
had taken the tenseless truths to be true at all times, under the extended
notion of truth-at-a-time, so now he takes the transcendental truths to be
true at all possible worlds, under the extended notion of truth-at-a-world. In

5For Fine, the notions of transcendental truth and of purely unworldly truth are co-extensive.
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the extended sense of ‘necessary’ the transcendental truths may be said to be
necessary, even though in the restricted sense of ‘necessary’ Fine distinguishes
between the transcendental truths and the necessary truths proper. There
is, however, a further extension here whose application to temporality is not
canvassed by Fine, and that is the ‘superextended’ sense of truth-at-a-world.
This applies to ‘all propositions whatever’ (Fine 2005, 326); thus, it applies
not just to the worldly sentences and the unworldly sentences, but also to
hybrid sentences, that is sentences ‘that are composed of both worldly and
unworldly components’ (Fine 2005, 326). An example would be ‘Socrates
does not exist or is self-identical’. This sentence is a hybrid sentence, since
it is a disjunction of a worldly sentence and an unworldly sentence, and is
necessary in the super-extended sense, but not in the extended sense or the
restricted sense.6

3.2 Fine’s application of the worldly/unworldly
distinction to the ‘puzzle’

Recall that the apparent puzzle arises out of the following argument:

(1) It is necessary that Socrates is a man.

(2) It is possible that Socrates does not exist.

(3) Therefore it is possible that Socrates is a man and does not
exist.

The supposed puzzle consists, in the words of (Fine 2005, 329), in the fact
that ‘the argument appears to be sound . . . yet its conclusion is unacceptable’.
For Fine, solving the ‘puzzle’ consists not only in pronouncing on whether the
argument really is sound or not, but also in explaining why our intuitions are
pulled in different ways. So, how are Fine’s distinctions meant to help solve
the supposed puzzle?

Fine suggests two hypotheses that are fundamental for his solution: (i)
the hypothesis that ‘we are naturally inclined to use the modalities in an

6For more details about Fine’s conceptions of restricted, extended, and super-extended modalities, see the
Appendix to this article.
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unextended or extended sense, though not in a superextended sense’ (Fine
2005, 335); (ii) the hypothesis that “‘exists” is a worldly predicate while such
predicates as “man” or “identity” are unworldly’ (Fine 2005, 336). So, says
(Fine 2005, 336),

[w]hen it comes to evaluating the first premiss [. . . ], we implicitly
treat ‘man’ as an unworldly predicate (in conformity with the [sec-
ond] hypothesis). We then accommodate the sense of ‘necessity’
to the sense of ‘man’ by taking it in an extended sense (by the first
hypothesis) and are thereby led to accept the first premiss.

Moreover, Fine thinks we are correct so to do, since he thinks ‘is a man’
is an unworldly predicate, and so ‘Socrates is a man’, since it is true, is
a transcendental truth, and therefore an extended necessity. In evaluating
the second premise, ‘we implicitly treat “exists” as a worldly predicate (in
conformity with the [second] hypothesis). We then take “possibility” in the
unextended sense (by the first hypothesis) and are thereby led to accept the
second premiss’ (Fine 2005, 337). Again, we are correct so to do, since ‘exists’
is, according to Fine, in this context, a worldly predicate, and so, given that,
intuitively, it is possible that Socrates does not exist, the sense of ‘possible’
here must be the restricted or unextended sense.

Now, for the dénouement. By Fine’s own earlier definitions, the right
thing for us to do is to take ‘Socrates is a man and does not exist’ to be a
hybrid sentence, since ‘is a man’ is a transcendental predicate and ‘does not
exist’ is a worldly one. On this account the right way for us to understand
the use of ‘possible’ in (3) would then be as a super-extended use, and (3)
would then come out as true. Fine has to explain why we intuitively think
that (3) is false. He says that this is because by his first hypothesis we are
‘disinclined’ to use the super-extended sense of ‘possible’; when we evaluate
the conclusion we now take ‘is a man’ to be worldly (and so ‘possible’ in the
restricted or unextended sense), contrary to how we took it in the first premiss.
Fine explains that ‘under this option, we take the possibility that Socrates is
a man and does not exist to consist in the existence of a possible worldly
circumstance in which Socrates is a man and does not exist’ (Fine 2005, 337),
and it is this that we rightly reject. Why do we (wrongly, by Fine’s lights)
take it to consist in the existence of that worldly circumstance? Fine seems
to think that we are distracted by the presence of the word ‘exist’ in (3) into
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confusing the transcendental predicate ‘is a man’ with the worldly predicate
‘is an existent man’. (To those worried that ‘is an existent man’ ought to be
a hybrid predicate rather than a worldly one, Fine replies ‘we may use the
worldly predicate [“existent”] to qualify the unworldly predicate [“is a man”]
[. . . ] and thereby form a worldly predicate [that] is true in each world of those
objects that are in the world-free extension of the first predicate and in the
world-bound extension of the second predicate’ (Fine 2005, 337).) On our
incorrect, worldly, understanding of ‘is a man’ the premisses do not entail the
conclusion, since the argument is now of the invalid form: □T p, ♢Rq : ♢R(p
& q).

On the correct, unworldly, understanding of ‘is a man’, however, since
‘Socrates is a man and does not exist’ is a hybrid sentence, the sense of ‘pos-
sible’ involved is the super-extended sense. Since Fine thinks that we are
already committed to the interpretation that the conclusion uses the super-
extended sense of ‘possible’, he suggests that we should ‘use the modalities in
a superextended sense throughout the argument’, in which case ‘the conclu-
sion does indeed follow from the premisses and should therefore be accepted’
(Fine 2005, 338). On this hypothesis the argument contains no false premiss
and is of the valid form □SEp, ♢SEq : ♢SE(p & q).

Having set out the alleged puzzle, two deficient responses to it and Fine’s
own response, in the following two sections we turn to the evaluation of Fine’s
response and present our own response.

4 Dissolving the ‘puzzle’

We hold, contrary to (Fine 2005, 328), that it is not the case that the ‘puz-
zle’ concerning possibility and non-existence ‘would otherwise be quite baf-
fling’ without our having Fine’s worldly/unworldly distinction at our dis-
posal to help us solve it. (Fine 2005, 328) holds that the application of the
worldly/unworldly distinction to solve the ‘puzzle’ counts as ‘an important
point in its favour’. While we do not argue against it here, the worldly/unworldly
distinction appears to us, like Fine’s version of the tensed/tenseless distinc-
tion, to be contentious. In fact, although we do not develop this point in what
follows, we doubt that Fine has succeeded in articulating any genuine distinc-
tion between matters worldly and unworldly. We will now argue in favour of
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what we think is a better approach to the supposed puzzle than those we have
discussed so far.

On our account, the problem with the argument from (1)–(3) is a lot
simpler than the switch between different understandings of necessity put
forward by the responses discussed so far (Priorian, standard and Finean).7

We begin by distinguishing, after (Wiggins 2001, 111–4), between two sorts
of sentence that feature in natural language: statements of necessary truth,
like

(1) It is necessary that Socrates is a man.

and statements of de re necessity like

(1*) Socrates is necessarily a man.

The modal operator in (1) is an operator on sentences. That in (1*) is
embedded within a complex predicative expression and modifies a simpler
predicative expression. We assume, after Wiggins, that statements of de re
necessity are not generally reducible to statements of necessary truth. We
also assume, again after Wiggins, that a true statement of de re necessity,
when it is about a contingent being and contains no operator other than the
modal operator, differs in truth value from its de dicto counterpart (which is,
in virtue of the contingency of the contingent being’s existence, false).

According to this approach, modal logics that employ only sentential modal
operators cannot therefore adequately capture the distinction between modal-
ity de dicto and modality de re (cf. Wiggins 1976, 294). In order to illustrate
this distinction formally, Wiggins employs the device of lambda abstraction,
which is designed to create a predicate into which predicate modifiers can
easily be inserted, and the predicate-modifier ‘nec’.8

(1) It is necessary that Socrates is a man.
□[(λx)[Man x], ⟨Socrates⟩]

7Since (Fine 2005, 338) ultimately deems the argument sound, he thinks that the problem mainly lies not
in the argument itself but in our intuitive analysis of it. This marks a difference between his approach, on
the one hand, and, on the other, the Priorian approach, the standard approach and our own.

8While it is convenient to Wiggins’s discussions and to ours to describe de re ‘necessarily’, and ‘nec’, as
predicate-modifiers, (Wiggins 2001, 111) expresses neutrality over whether these expressions really modify
predicates or rather the copula. For a discussion of these options, and a defence of the view that modal
adverbs are copula modifiers, see (McGinn 2000, Chapter 4).
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(1*) Socrates is necessarily a man.
[nec(λx)[Man x]], ⟨Socrates⟩

Approaches to the de re/de dicto distinction that employ only sentential
modal operators will have difficulty in justifiably securing the result that in
statements of necessity de re, like (1*), the name does not occur in an opaque
context (again, cf. Wiggins 1976, 294). It is therein, rather than in considera-
tions about the scope of a sentential modal operator (which is thereby, at least
as normally understood in the literature, an intensional, opacity-producing op-
erator), that the distinction between de re and de dicto modal statements is
genuinely to be identified.

Let us assume, with Fine, and as the surface grammar of its constituent
sentences suggests, that the argument (1)–(3) employs only sentential modal
operators.

We contend, contrary to (1), that it is not, in fact, necessary that Socrates
is a man. We think this because, intuitively, it might have been the case that
there never was such an object as the concretely existent philosopher Socrates,
and, as (Rumfitt 2003, 466) puts it, ‘an object’s existence is a pre-condition for
its being either true or false that the object is such-and-such’. (Rumfitt clearly
means that it is a necessary pre-condition not a merely contingent one.) We
know that Fine disputes Rumfitt’s and our intuitions here, but we are not
persuaded by his attempts (Fine 2005, 345) to explain how something can be
a man without existing.

If, however, we are wrong about this, and (1) is correct, and it is indeed
necessary that Socrates is a man for the reason that Fine gives, viz. that it is
a transcendental truth that he is a man, then we affirm that in that case (2)
is false. If it is transcendentally true that Socrates is a man then Socrates will
enjoy, along with his worldly existence, an unworldly, transcendental form
of existence, and, since this is transcendental, it will be impossible that he
should not have enjoyed it. We know that Fine will reply that, although (2)
can legitimately be taken as coming out false in this way, it is more natural
to interpret it as being about worldly existence and therefore to take it to be
true. All we can say is that we find implausible the proposed switch from
transcendental necessity in (1) to worldly necessity in (2), and that strong
reasons would be required to overcome this implausibility. Moreover, if we are
right that the approach to modality that we propose disposes of the supposed
puzzle, then the strong reasons to adopt Fine’s switch of modalities between
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the first and the second premiss are lacking.
As we remarked in Section 3.2, Fine thinks that solving the ‘puzzle’ consists

partly in evaluating the soundness of the argument and partly in explaining
why our intuitions are pulled in different ways when we try to evaluate its
soundness.9 Fine presented the argument as one in which we have two intu-
itively true premisses which, by a valid rule of inference, entail a conclusion
that strikes us as intuitively unacceptable.

We can explain the intuition that (1) is true by saying that, when (1) is
(mistakenly) evaluated as true, it is being taken to be a notational variant of
(1*). We take it that if sortal essentialism is a true metaphysical doctrine and
‘man’ is a substance sortal, then ‘Socrates is necessarily a man’ is indeed true.
Sortal essentialism, does not, we have agreed with Wiggins, entail (1) itself.

Regarding (2), if both the modality and the negation are taken to be
sentential, then the original supposed intuition that (2) is true can be left
intact. After all, we have argued that the embedded statement in (1) (i.e. the
statement ‘Socrates is a man’) is in no genuine sense alethically necessary and
it follows from this, given its truth-aptness, that there is some sense in which
its negation is alethically possible. Reluctance to accept (3) is, we have argued,
entirely well-founded. Even if it is held, for the reasons we have just mentioned,
that (1) and (2) are intuitively true, the attendant reluctance, nonetheless,
to accept (3) does not require the employment of Fine’s distinction between
matters worldly and unworldly (and the distinctions he launches on its back).

We can now set up a dilemma concerning the interpretation of (1):

(1) It is necessary that Socrates is a man.

There are two possible interpretations of (1). The first is that, in line with its
surface syntax, it is a statement that employs a sentential modal operator:

□[(λx)[Man x], ⟨Socrates⟩]

The second is that it is to be interpreted as a notational variant of (1*)
(‘Socrates is necessarily a man’), which we formalized as:

[nec(λx)[Man x]], ⟨Socrates⟩

9In discussion, Fine has emphasized to us the importance, in his estimation of the philosopher’s remit, of
the second part of this task.
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Assume, for the first horn of the dilemma, the first interpretation, i.e., that
(1) employs a sentential modal operator. In that case, as we suggested above
(after Rumfitt), (1) entails

(4) It is necessary that Socrates exists.
□[(λx)[Exists x], <Socrates>]

Lest this formalization should give the impression that we admit a primitive
first-level existence predicate, we now provide what we take to be a notational
variant of it:

□[(λx)[(∃y)y = x], <Socrates>]

This variant employs the well-known classical-logical device of using the ex-
istential quantifier and the identity sign to formalize singular existentials.10

Throughout, when we use ‘Exists’ in lambda translations, we intend to em-
ploy it merely as an abbreviation, not as a primitive first-level predicate.

Let us return to the main business. Provided that the modalities involved
in (1) and (2) are duals and that (2) also employs a sentential modal operator,
and given that (1) entails (4), (1) and (2) form an inconsistent pair. Thus,
no puzzle is generated: the argument is unsound since one of the premises is
false.

Assume, for the second horn of the dilemma, that (1) is to be interpreted
as a notational variant of (1*). As a result, the argument is no longer of the
valid form □p, ♢q : ♢(p & q). Instead, the argument is now:

(1*) Socrates is necessarily a man.
[nec(λx)[Man x]], ⟨Socrates⟩

(2) It is possible that Socrates does not exist.
♢¬[(λx)[Exists x], ⟨Socrates⟩]

10A translation that is more complicated still, though reducible to ours, can be obtained by emulating the
approach suggested by (Wiggins 2003, 486). Thus: ‘□[[(∃y)((λx = Socrates], ⟨y⟩]’ . This illustrates the ability
of the lambda notation to reflect the grammatical distinction between ‘Socrates is identical with something’
(our formulation) and ‘Something is identical with Socrates’ (Wiggins 2003).
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(3) Therefore it is possible that Socrates is a man and does not
exist.
♢[(λx)[Man x], ⟨Socrates⟩ & ¬[(λx)[Exists x], ⟨Socrates⟩]]

Thus, the argument is invalid, since the two premises employ different modal-
ities: (1*) uses de re necessity, and does not entail its de dicto counterpart,
while (2) uses de dicto possibility. Once again, there is no puzzle.

5 De re necessity and contingent existence

Our approach to dissolving the ‘puzzle’ involved appeal to a version of the
distinction between necessity de re and de dicto that remains unorthodox.
Relatedly, its technical details remain relatively under-developed. In particu-
lar, it might be objected that our approach does not seem to be readily com-
patible with model-theoretical approaches to the formal semantics of modal
logics. Our response to this objection consists of two points. First, we note
that the form of distinguishing between the logical syntax of de re and de
dicto modal sentences that we have favoured, including the deployment of the
lambda notation, has already been adopted by some authors who also, in fact,
provide both types of sentence with model-theoretical semantics: (Fitting and
Mendelsohn 1998, 85–8, 193, 201, 213, 217) and (Garson 2013, Chapter 19).
Secondly, this section and the next one explain the distinction in more detail
and summarize a model-theoretical semantics that preserves the judgements
made in the foregoing sections about the truth values of relevant modal sen-
tences.

We take it that if Socrates is a contingent being then it is neither necessary
that Socrates exists nor the case that Socrates necessarily exists. Thus, we
take both of the following sentences to be false:

(4) It is necessary that Socrates exists.
□[(λx)[Exists x], ⟨Socrates⟩]

(4*) Socrates necessarily exists.

On the assumption that there is no primitive first-level existence predicate,
and that ‘Socrates exists’ contains neither the copula nor such a predicate,
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the ‘necessarily’ in (4*) cannot be either a copula modifier or the modifier of
such a predicate. On our view, given that Socrates is a contingent existent,
(4*) admits of no true essentialist reading, and is significantly different from
standard essentialist statements like (1*).

We think that someone unacquainted with formal systems of modal logic
that took (1*) to be true would be unlikely to regard (4*) as true. We think
that such a person would understand (4*) as asserting Socrates to be a neces-
sary being, rather than merely necessarily being a being (or necessarily being
an object). We do not intend this to be a merely pragmatic point. Rather,
our point is that taking (4*) to admit of an interpretation on which it is true
appears to us to be subversion of what the sentence means.11

Someone might offer this formalization of (4*), treating the sentence in
broadly the same manner as (1*) above:

[nec(λx)[(∃y)y = x]], ⟨Socrates⟩

It seems to us that this formalization is apt for (the true) ‘Socrates is neces-
sarily a being’, but is not apt for (the false) ‘Socrates is a necessary being’
and, thus, not apt for (the false) (4*) (i.e., ‘Socrates necessarily exists’).

Our position with respect to (4) and (4*) just spells out what we think
is involved in holding that Socrates is a contingent, rather than (unlike such
supposed cases as God, numbers, and propositions) a necessary, being. With
respect to (4*), we agree with (Fine 2005, 329):

There may be items—numbers or propositions or the like—that
necessarily exist. But Socrates (and Felix) are not among them.
Indeed, it is surely possible that no men (or cats) exist; and from
this it follows, given the appropriate version of the first premiss,
that it is possible that Socrates (or Felix) does not exist.

In denying that (1*) entails (4*), we part company with a philosopher
whose general approach to the distinction between modality de dicto and de
re we share, namely Efird.

11Also, when people that think that there are contingent beings suggest that (4*) is true, we believe that
they interpret (4*) in a way that dilutes its real–and, in philosophy and theology, traditional–meaning. When
theologians say that God necessarily exists they are not appealing to a notion of necessary existence that is
true of all objects. Indeed, we deny that there is any such bona fide notion. The suggestion that there is some
sense of ‘necessarily’ on which (4*) is true seems to us to stem either from the global denial of contingent
existence or from a reconstruction of natural-language meaning in the light of the features of a formal system
of modal logic.
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Efird’s approach combines a Wiggins-style approach to the de re/de dicto
distinction with a Priorian semantics. It has the result (Efird 2010, 107), as
we also contend, that there are no necessary truths about contingent existents.
Thus, to use Efird’s example, it is not the case that it is necessary that Timothy
Williamson exists. Nevertheless, Efird’s approach has the further result (Efird
2010, 97, 107), which ours does not, that Williamson necessarily exists.12

According to (Efird 2010, 107), when the Priorian semantics is adopted:13

we can [. . . ] define a scheme for translating formulas containing
‘nec’ to sentences containing ‘♢’ and ‘¬’: [nec(λx)(P (x))], [a]=df.

¬♢¬P (a). This then yields the following [. . . ]:

‘Necessarily, a is F’ is represented formally as: □Fa.
‘a is necessarily F’ is represented formally as: (Fa &
¬♢¬Fa).
‘Contingently, a is F’ is represented formally as: (Fa &
¬□Fa).
‘a is contingently F’ is represented formally as: (Fa &
♢¬Fa).

These formalizations give rise to the consistent conjunctive schema:

‘a is necessarily F and, contingently, a is F’ is represented
formally as: [Fa & (¬♢¬Fa & ¬□Fa)].

As an instance of this conjunctive schema we have: Williamson
necessarily exists, and, contingently, Williamson exists [∃!a & (¬♢¬∃!a
& ¬□∃!a)]. So [. . . ] Williamson is, in a de re sense, a necessary
existent, but he is not a necessary existent in the de dicto sense:

12We note that (Efird 2010, 106) assumes that Wiggins’s account of de re ‘necessarily’ properly applies to
modalized existentials like (4*), and appears to see no difficulties with this assumption. We have argued, in
this section, that it does not so apply, and, in so doing, we have made such difficulties plain. Also, (Wiggins
1995, 2003) seems to favour treating ‘exists’, as we do, as a defined predicate. So, the proponent of a Wiggins-
style approach to the de re/de dicto distinction does not seem to be forced to go down Efird’s road of taking
it that there is a sense in which ‘Socrates necessarily exists’ is true.

13Efird uses ‘nec’ in place of Wiggins’s ‘nec’, ‘∃!’ as an existence predicate, and square brackets both where
Wiggins would use square brackets and in place of Wiggins’s angled brackets.
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Williamson necessarily exists, but it is not necessary that he ex-
ists.14

Importantly, for our purposes, Efird’s approach has the consequence that
it is true that Williamson necessarily exists. Efird has to affirm, then, that
(1*) entails (4*); indeed, he embraces this consequence. On the interpretation
of (4*) that Efird gives, (4*), though true, does not entail (4), and does not
contradict (2). On Efird’s account, just as each object is necessarily identical
with itself, so each object necessarily exists. Let us set out, and explain the
reasoning behind, our own position. Consider the following sentences:

(5) Socrates is necessarily self-identical.
[nec(λx[x = x]], ⟨Socrates⟩

(6) Socrates is necessarily an existent.
[nec(λx)[Existent x]], ⟨Socrates⟩15

(7) Socrates is necessarily an object.
[nec(λx)[Object x]], ⟨Socrates⟩

(8) Socrates is a necessary existent.
□[(λx)[Existent x], <Socrates>]

Supposing that (1*) is true, (5) follows, for whatever is necessarily a man
is also necessarily self-identical. Likewise, and with similar reasoning, (6) and
(7) also follow from (1*). While it is the case that whatever is necessarily a

14It is evident, then, that Efird holds that ‘Williamson is a necessary existent’ is ambiguous. In the main
text, we deny that it is ambiguous. Moreover, even if, as Efird argues, ‘Williamson necessarily exists, and,
contingently, Williamson exists’ is true, it does not follow immediately that there are two senses of ‘Williamson
is a necessary existent’. This is because that sentence employs neither a modal operator nor a modal adverb,
but, rather, a modal adjective. We note, further, that non-existential sentences that employ ‘necessarily’
as a predicate modifier, like ‘Socrates is necessarily human’, do not seem equivalent to the corresponding
sentences featuring the adjective ‘necessary’, like ‘Socrates is a necessary human’: it is questionable whether
these transformations yield sentences that are well-formed and semantically complete, let alone ones that
mean what the source sentences mean. This seems to be a difference between modalized non-existentials
and modalized existentials, like ‘Socrates necessarily exists’, which do seem equivalent to the corresponding
sentences featuring the adjective ‘necessary’ (in this case, ‘Socrates is a necessary existent’).

15In this formalization, ‘Existent’ is not to be read adjectivally. Compare ‘Object’ in (7).

Organon F 26 (3) 2019: 446–473



On a Supposed Puzzle Concerning Modality and Existence 463

man is necessarily an object, and necessarily an existent, it is not the case that
whatever is necessarily a man is a necessary object or a necessary existent.
Thus (8), unlike (5)–(7), does not follow from (1*). While (8) entails that it
is necessary that there is such an existent as Socrates, (6) and (7) do not.

(4*) might at first appear to admit of two different readings, namely (6)
and (8). Nevertheless, we see no good reason to view (6) as an admissible
reading of (4*). While whatever exists is necessarily a being, an object, or an
existent, this does not entail that whatever exists exists necessarily: thus, (6)
is logically weaker than (4*). If, as we believe, (6) is an incorrect reading of
(4*), then (8) is the correct reading.16 The distinction between (6) and (8)
seems as clear to us as that between the true ‘Socrates is necessarily a being’
and the false ‘Socrates is a necessary being’. Since (8) admits of no ready
reading on which it is true, and since (6) is not available as an independently
plausible, rather than theoretically forced, reading of (4*), (4*) also admits of
no ready reading on which it is true.

6 Semantics for de re necessity with
contingent existence

While it might be thought that a Wiggins-style approach to the syntax of de
re modality is not readily reconcilable with the standard model-theoretical (or
‘possible worlds’) semantics for modal logics, we noted, at the beginning of the
previous section, that this is not really the case. What has been lacking in the
literature so far, however, is a semantics that secures the intuitive judgements
about the truth values of modal sentences that partly motivate the Wiggins-
style approach, and that is a semantics consistent with the judgement that
there is no sense of ‘necessarily’ in which ‘whatever exists exists necessarily’
is true.

We now specify a semantics fit to accommodate the attribution of de re

16We take this to be so independently of whether the lambda translation given for (8) is ultimately correct.
One reason for doubt here is that in sentences like ‘Socrates necessarily exists’, the alternatives we have
explored leave us with no method of formalization that both captures the logical strength of the sentence
and allows ‘necessarily’ to remain, as it appears, a referentially transparent operator. Also, (8) features not a
modal operator or adverb, upon which modal logics have overwhelmingly concentrated, but a modal adjective.
The logical behaviour of modal adjectives is neither studied as often nor understood as well. There seems to
be work left to do in resolving these difficulties.
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necessary attributes to beings that are held to exist contingently.17 Our se-
mantics has the following features.

First, no atomic sentence is a logical truth. In classical quantificational log-
ics, any identity sentence of the form ⌜c = c⌝ is a logical truth. In classically-
based quantified modal logics, any formula of the form ⌜□c = c⌝ is normally a
logical truth. (For an exception, see Nelson 2016.) Since, on our account, no
atomic sentence is a logical truth, we avoid the result that, for any arbitrarily
selected object, it is a true statement of de dicto necessity that the object is
identical with itself.

Secondly, our semantics is that of a universally free negative free logic.
That is to say, as well as employing free-logical quantification (Garson 2013,
Ch. 13, esp. 264), and permitting both empty names and an empty domain,
we treat every atomic sentence containing an empty name as thereby false.

Thirdly, the presence of empty names, does not, on our semantics, give
rise to trivially true statements of de re necessity. For example, it is a log-
ical truth, because it is an instance of the law of identity of propositional
logic, that if Pegasus exists then Pegasus exists. As a consequence, when the
weak necessity account of de re necessity is adopted, and extended to natural
language, Pegasus necessarily exists, and, indeed, necessarily—albeit trivially
so—has every property whatsoever, as a matter of weak necessity—see further
(McLeod 2008, 319).

Fourthly, essentialist facts about contingent beings, if there be such facts,
are metaphysical: they are not logical truths. They have the same logical
status as atomic facts. Thus, the de re necessitation of an atomic sentence,
which involves the insertion of a predicate-modifying ‘necessarily’ into the
sentence (as when ‘Socrates is human’ is turned into ‘Socrates is necessarily
human’) will have a result that, like the simpler sentence, is neither logically
true nor logically false.

We now spell out the semantic differences between, (1) and (1*); we then
provide general semantic clauses for the modal expressions in these sentences.
In what follows, following (Garson 2013), ‘wRv’ means that the possible world
w has access to the possible world v (in other words, v is accessible from w).
‘aw(It is necessary that Socrates is a man) = T’, for example, means that the
sentence in parentheses is true at the world w.18

17We do not here attempt fully to specify a formal system fit for this task. We hope to do so elsewhere.
18Our semantic clause for ‘It is necessary that’ mirrors that of ‘□’ in the modal logic K: see (Garson 2013,

64). That for predicate-modifying ‘necessarily’ is different.
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Semantics for (1):

aw(It is necessary that Socrates is a man) = T if and only
if, for each possible world, v, such that wRv, av(Socrates
is a man) = T.

Semantics for (1*):

aw(Socrates is necessarily a man) = T iff aw(Socrates
exists) = T, and for each possible world, v, such that
av(Socrates exists) = T and wRv, av(Socrates is a man)
= T.

Semantics for ‘It is necessary that’:

aw(It is necessary that c is A) = T iff for each v such
that wRv, av(c is A) = T.

Now let A be a primitive predicate (that is, one that is not defined using
any item, other than the identity sign, from the logical vocabulary).19 With
this restriction in place, we now specify our semantics for predicate-modifying
‘necessarily’.

Semantics for predicate-modifying ‘necessarily’:

aw(c is necessarily A) = T iff aw(c exists) = T and for
each v such that av(c exists) = T and wRv, av(c is A)
= T.

On these semantics, (1), but not (1*), entails that it is necessary that Socrates
exists. Moreover, (1*) does not entail, in any bona fide sense of ‘necessar-
ily’, the sentence ‘Socrates necessarily exists’. Our semantics for predicate-
modifying ‘necessarily’, though simple, is intended to achieve the breakthrough
of providing for a Wiggins-style account of the de re/de dicto distinction a

19While this restriction may go further than is strictly necessary in that it excludes all defined predicates,
it is motivated by the case of ‘exists’, as discussed in Section 5 above. The discussion there was intended, in
part, to show that the exclusion of ‘exists’, at least, from the clause for predicate-modifying ‘necessarily’ was
not an arbitrary restriction.
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model-theoretical semantics that allows there to be true statements of de re
necessity about contingent beings, without having the result that, in some
sense of ‘necessarily’, the statement ‘whatever exists exists necessarily’ is true.

The defined status of the existence predicate means that ‘Socrates necessar-
ily exists’, for which our semantic clause for predicate-modifying ‘necessarily’
does not account, must be parsed in one of the following ways:

(9) It is necessary that there is something with which Socrates is
identical.

(10) There is something that is necessarily identical with Socrates.

On the first parsing, which is the one that both natural language and tra-
ditional philosophical and theological parlance about necessary beings would
suggest to be appropriate, there is (unlike in cases that feature a primitive
monadic predicate) no semantic difference between ‘Socrates necessarily ex-
ists’ and ‘It is necessary that Socrates exists’. (Given that it is not the case
that Socrates exists in all possible worlds, both sentences are false.) Parsed
in the second way, ‘Socrates necessarily exists’ is true, but its surface form
very much belies both its logical form and its semantics. Moreover, the pro-
posal that the sentence ought to be so parsed is one for which we see no good
rationale and against which we have already argued in Section 5.

7 Conclusion
We conclude that the argument from (1)–(3) is unsound, and that it does
not generate any deep puzzle. The predominant reason given by Fine for
subscribing to the worldly/unworldly distinction is as a means of solving the
‘puzzle’, with any other reasons being only alluded to, rather than spelled out,
in his piece. Thus the distinction is, on the evidence Fine presents, under-
motivated. In the case of the supposed puzzle, at least, it is unnecessary. Also,
and perhaps more significantly, a Wiggins-style approach to the distinction
between de re and de dicto modality not only dissolves Fine’s puzzle, but can
be provided with a formal semantics that secures some of the philosophical
motivations of that approach. These include reconciling true statements of
de re necessity about concrete objects with the denial that there is a sense
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of ‘necessarily’ in which the statement ‘whatever exists exists necessarily’ is
true.
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8 Appendix: Fine on modalities

8.1 Grades of modality

The purpose of this technical appendix is to further our understanding, and
that of the reader, of the distinctions between modal notions that Fine makes
in his article and to develop some details left aside in it. (This is despite our
own scepticism about the need for, and indeed desirability of, these distinc-
tions.) While we acknowledge that it would be useful to do this for quantified
modal logic, we restrict our attention to sentential modal logic.

Recall that Fine distinguishes between restricted and extended modalities.
Let ‘R’ be a subscript for restricted modality, ‘T ’ be a subscript for transcen-
dental modality, and ‘E’ be a subscript for extended modality. Where A is any
truth-valued sentence that is either purely worldly or purely unworldly,20 we
shall now define restricted, transcendental, and extended notions of necessity
and possibility. We take our definitions to spell out those of (Fine 2005, 325–
7), although ours differ from his in that ours do not place the same emphasis

20Such sentences contrast with the ‘hybrid’ sentences with which we are concerned in Section 8.2 below.
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on possible worlds. These definitions are not of operators in a formal language,
as box and lozenge are normally taken to be, but instead are definitions of
meta-linguistic predicates attached to names of sentences, after (Quine 1953):
‘Nec’ and ‘Poss’ are short for ‘is necessarily true’ and ‘is possibly true’.

(Def PossR) PossRA =df there is some worldly circumstance, c,
such that ac(A) = T.21

(Def NecR) NecRA =df PossRA & ¬PossR¬A (i.e., for every worldly
circumstance, c, ac(A) = T).

(Def NecT ) NecT A =df A is true & ¬PossRA (i.e. A is true and
yet there is no worldly circumstance, c, such that ac(A) = T).

(Def PossT ) PossT A =df NecT A.22

(Def NecE) NecEA =df NecRA∨ NecT A.

(Def PossE) PossEA =df PossRA∨ PossT A.

8.2 Super-extended modalities

(Fine 2005, 326) asserts that the idea of super-extended truth (SE-truth)
(and so that of super-extended necessity (SE-necessity)) ‘applies to “hybrid”
propositions. These are propositions . . . that are composed of both worldly
and unworldly components. Their truth-value in a given world turns partly
on the worldly facts and also partly on the transcendental facts’.23

Fine also allows for (i) hybrid predicates, i.e. predicates containing at least
one worldly part and at least one unworldly part, e.g. ‘is existent and is a
man’; cf. (Fine 2005, 338), and (ii) hybrid terms, i.e. terms containing at least

21The restriction to worldly circumstances is necessary so as to rule out transcendental truths.
22The notions of transcendental truth, transcendental necessity and transcendental possibility are co-

extensive.
23As may already be evident, we prefer to work with the idea of the sentence rather than that of the

proposition.
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one worldly part that is semantically significant and at least one unworldly
part that is semantically significant, e.g. ‘the singleton set of Socrates’.24

Despite his allowing for these two categories, we shall presume that, for
Fine, any hybrid sentence must be truth-functionally complex, i.e. that there
are no atomic hybrid sentences. This is for four reasons. First, it is simpler to
analyse logically complex predicates in a truth-functional way, i.e. it is simpler
to analyse ‘Socrates is existent and is a man’ (for example) not as an atomic
sentence featuring the single predication of a conjunctive predicate, but rather
as a conjunction of two sentences each featuring a single predicate predicated of
an identical subject, thus ‘Socrates is existent and Socrates is a man’. Secondly,
Fine holds that compound predicates in which one element qualifies the other
are not hybrid, thus ‘existent man’ (for example) is a worldly predicate, not a
hybrid one (Fine 2005, 337). Thirdly, Fine holds that sentences containing a
hybrid name are not on that account hybrid sentences: their status depends on
the status of the predicates that they contain; thus, ‘the singleton of Socrates
is self-identical’, for example, is transcendentally true. Fourthly, for Fine, a
sentence with a worldly term and an unworldly predicate, e.g. (assuming that
‘Socrates’ is a worldly term) ‘Socrates is self-identical’, is unworldly, and a
sentence with an unworldly term and a worldly predicate, e.g. ‘the number
three is being thought about by Socrates’, is worldly.

Now let A be any compound sentence in a truth-functional formal lan-
guage, or in a truth-functional fragment of a natural language. We now define
what it is to be a hybrid sentence of such a language.

Case i. Where ζ is a dyadic operator and A is a sentence of the form B
ζ C, A is a hybrid sentence if and only if one of the following obtains:

(i) either B or C is a hybrid sentence;
(ii) B is a worldly sentence and C an unworldly sentence, or vice
versa.

Case ii. Where A is of the form ¬B, A is a hybrid sentence if and only if
B is a hybrid sentence.

This concludes our definition of hybrid sentence. Let us now set out a principle
that we shall then use to set up an inductive definition of the super-extended

24(Fine 2005) does not actually discuss hybrid terms, but does discuss hybrid objects using the singleton of
Socrates as an example (Fine 2005, 352).
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modalities (SE-modalities).

(Main Principle)(MP) If A is extendedly necessary (E-necessary)
then A is super-extendedly necessary (SE-necessary).

If A is atomic then (MP) is the only way in which A can be SE-necessary,
since no hybrid sentence is atomic. Since A is E-necessary if and only if ¬A
is extendedly impossible (E-impossible), and A is SE-necessary if and only if
¬A is super-extendedly impossible (SE-impossible), (MP) entails:

(Supplementary Principle)(SP) If A is E-impossible then A is
SE-impossible.

If A is atomic then (SP) is the only way in which A can be SE-impossible,
since no hybrid sentence is atomic.

(SE-equivalence)(SE) If two contingent (worldly) sentences have
the same truth-value as each other across possible worlds then they
are SE-equivalent; if two worldly or transcendent sentences are
both E-necessary then they are SE-equivalent, and if two worldly
or transcendent sentences are both E-impossible then they are SE-
equivalent. No other two sentences are SE-equivalent.

We also need to make use of the following theorem, which deploys the
notion of SE-equivalence:

Substitution Theorem Let A(B) be a sentence containing an
occurrence of B. A(B) is then SE-equivalent to (B & A(C))∨(¬B
& A(C)) where C is SE-equivalent to B.

In other words, take A(B). Find a sentence, C, that is SE-equivalent to B and
substitute it for B. Conjoin this new sentence with B. This gives B & A(C)
(call this ‘sentence 1’). Then negate B to get ¬B. Conjoin the result with
A(C). This gives ¬B & A(C) (call this ‘sentence 2’). Now disjoin sentence 1
with sentence 2 to get (B & A(C))∨ (¬B & A(C)). This can easily be seen to
be equivalent to A(B). (Proof: suppose (i) that both A(B) and B are true,
then the first disjunct, sentence 1, will be true. Suppose (ii) that A(B) is true
and B is false, then the second disjunct, sentence 2, will be true. Suppose (iii)
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that A(B) is false and B is true, then both disjuncts, sentence 1 and sentence
2, will be false. Suppose (iv) that both A(B) and B are false, then again both
disjuncts, sentence 1 and sentence 2, will be false.)25

We know that every hybrid sentence contains as a proper part at least one
unworldly sentence. These unworldly sentences will play the role of B above.
We make continued use of the substitution theorem until every embedded
unworldly sentence in A has been removed and replaced with an SE-equivalent
worldly sentence (e.g. ‘Socrates exists or does not exist’ if the unworldly
sentence is transcendentally true, and ‘Socrates exists and does not exist’ if
the unworldly sentence is transcendentally false)—these sentences will play
the role of C above.

This means that we are left with a (possibly embedded) sentence of the
form (B & A(C)) ∨ (¬B & A(C)) in which B is unworldly and C is a worldly
equivalent of B. It remains for us to define when this sentence, (B & A(C)) ∨
(¬B & A(C)), is SE-necessary.

Suppose (i) that B is transcendentally true. It follows that C is a worldly
necessity. It further follows, by (MP) and (SP) above, that B and C are SE-
necessary. We now need to evaluate each of the disjuncts of (B & A(C))∨(¬B
& A(C)). Let us start with the first disjunct. Since A(C) is not a hybrid
sentence—all of its component sentences are purely worldly—we already know,
by (MP) and (SP) above, the modal status of A(C): if A(C) is E-necessary
then it is SE-necessary, if it is E-impossible then it is SE-impossible, and
if it is E-contingent then it is SE-contingent. Since B is SE-necessary, and
a conjunction is SE-necessary if and only if each conjunct is SE-necessary
(since, by its truth-table, a conjunction is true when and only when both its
conjuncts are true), it follows that if A(C) is E-necessary then B & A(C) is
SE-necessary, if A(C) is E-impossible then B & A(C) is SE-impossible, and if
A(C) is E-contingent then B & A(C) is SE-contingent. But since the second
disjunct is SE-impossible (since ¬B is SE-impossible), irrespective of A(C), it
follows, further, that if A(C) is E-necessary then B & A(C) ∨ (¬B & A(C))
is SE-necessary, if A(C) is E-impossible then (B & A(C)) ∨ (¬B & A(C)) is
SE-impossible, and if A(C) is E-contingent then (B & A(C)) ∨ (¬B & A(C))
is SE-contingent.

Suppose (ii) that B is transcendentally false. It follows that C is a worldly
impossibility. It further follows, by (MP) and (SP) above, that B and C are

25We are very grateful to Kit Fine for drawing our attention to this.
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SE-impossible. We need, again, to evaluate each of the disjuncts of (B &
A(C))∨ (¬B & A(C)). Let us start with the second disjunct. Again, by (MP)
and (SP) above, we already know the modal status of A(C), since it is not
a hybrid: if A(C) is E-necessary then it is SE-necessary, if it is E-impossible
then it is SE-impossible, and if it is E-contingent then it is SE-contingent.
But, further, since ¬B is transcendentally true (since B was transcendentally
false), it follows that if A(C) is E-necessary then ¬B & A(C) is SE-necessary,
if A(C) is E-impossible then ¬B & A(C) is SE-impossible, and if A(C) is
E-contingent then ¬B & A(C) is SE-contingent. But since the first disjunct is
SE-impossible, since B is SE-impossible (and a conjunction is SE-impossible
if and only if at least one conjunct is SE-impossible (since, by its truth-table,
a conjunction is false when and only when at least one conjunct is false)),
it follows that if A(C) is E-necessary then (B & A(C)) ∨ (¬B & A(C)) is
SE-necessary, if A(C) is E-impossible then (B & A(C)) ∨ (¬B & A(C)) is
SE-impossible, and if A(C) is E-contingent then (B & A(C)) ∨ (¬B & A(C))
is SE-contingent.

It may be that (B & A(C))∨ (¬B & A(C)) is itself an embedded sentence,
in which case we just repeat the procedure now that we know the modal status
of (B & A(C))∨(¬B & A(C)). Since every compound sentence will be covered
by repeated applications of this procedure, and since no atomic sentence is a
hybrid sentence, this concludes our recursive definition of SE-modality.
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logical necessity is not S2 but “(at least) S4” (Wiredu 1979, 692; see Lewis

∗University of the Witwatersrand
� Department of Philosophy, School of Social Sciences, University of the Witwatersrand,

Johannesburg, Private Bag 3, WITS 2050, South Africa
� david.martens@wits.ac.za or david.martens@gmail.com

© The Author. Journal compilation © The Editorial Board, Organon F.

This work is licensed under a Creative Commons “Attribution-NonCommercial
4.0 International” license.

https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en


Wiredu contra Lewis 475

and Langford 1959). My questions are, what is Wiredu’s argument exactly,
and is it sound? I conclude that Wiredu’s argument cannot be accepted as
sound but a variant argument can be accepted as sound.

My questions are prompted by the provocative incongruity between, and
incompleteness of, terse notes on Wiredu’s paper by David Makinson and
Lloyd Humberstone. Incongruously, while Makinson finds “a technical error”
that he says “vitiates both parts of the paper” and “some confusion” in the
second part (Makinson 1980), Humberstone credits Wiredu’s paper with a
worthwhile “observation” and “result” that Humberstone also credits to a pa-
per by Max Cresswell (Humberstone 2011, 604, 1154; see Cresswell 1965, not
cited by Wiredu). Moreover, Makinson’s and Humberstone’s notes are lim-
ited to only some formal aspects of Wiredu’s paper, where the main concern
really is pragmatic in a sense that borders on epistemic. (The broader philo-
sophical contexts of Wiredu’s and Lewis’s formal investigations are sketched
by Osha 2014 and Hunter 2016.) A satisfying treatment of Wiredu’s paper
thus should address the incongruity and the incompleteness of Makinson’s and
Humberstone’s notes, and the relation of Wiredu’s argument to Cresswell’s.

As suggested by Makinson’s comments quoted above, Wiredu frames his
paper as providing two arguments for his main conclusion, one primary and
the other “alternative” (Wiredu 1979, 692). The alternative argument is aimed
at showing that “the addition of [a certain] definition of necessity [. . .] to a
suitable system of propositional logic yields at least S4” (Wiredu 1979, 693). It
seems to me that Humberstone is silent about Wiredu’s primary argument and
that his attention is focused on formal aspects of this alternative argument,
which he takes to be in relevant respects essentially the same as Cresswell’s
argument, and which he thinks can be understood in such a way as to be sound
and free from any insuperable technical error or confusion of the sort Makinson
reports. I think in the end, though, Wiredu’s paper is best understood as
providing a single argument for his main conclusion, but with two formally
distinct lines of support for a key premise in that argument.

My attention for the most part is focused on what Wiredu presents as his
primary argument, where Wiredu’s pivotal challenge to Lewis is this.

Lewis himself was to the last cautious of any [modal] system stronger
than S2 . . . . [But] he could have been more adventurous modally
with perfect logicality . . . . [For there is] a way of establishing the
logical inevitability of S4 [using a certain substitution rule that
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is] very plausible and intuitively acceptable . . . . [When either S1
or S2 is appropriately extended with that rule,] (at least) S4 be-
comes available . . . . [So,] by Lewis’ own logical interpretation of
the modalities he was committed to S4 . . . (Wiredu 1979, 689, 691,
692, 694).

Clearly, while Wiredu thinks S4 is the right modal logic—in the sense that the
truth about logical necessity includes at least S4—that is not exactly what
he intends to argue. Rather, his challenge is a circumstantial ad hominem
to Lewis. Wiredu’s argument in outline is that, because Lewis justifiably
accepted that the truth about logical necessity includes at least S1 or S2,
and Lewis could justifiably have accepted the substitution rule Wiredu has in
mind, and S4 is deductively contained in the system that results when either
S1 or S2 is appropriately extended with that substitution rule, therefore Lewis
could justifiably have accepted that the truth about logical necessity includes
at least S4. Fairly interpreting and assessing Wiredu’s argument thus requires
considering exactly what rule he has in mind and exactly why he thinks Lewis
could justifiably have accepted that rule.

I seek to understand and adjudicate Wiredu’s challenge to Lewis as much
as possible on its own terms. So I take Lewis’s antecedent commitments, as
Wiredu sees them and as much as possible, as given. First, like Wiredu, I do
not dispute or attempt to fully articulate Lewis’s pragmatism about choice
of logical system. Lewis said that “the grounds of choice [among alternative
logical systems] can only be pragmatic”, “such as simplicity or comprehensive-
ness or accord with our most frequent purposes in inference” (Lewis 1932, 507;
1934, 74). Though Lewis gave “little theoretical discussion of these ‘pragmatic
considerations”’ (Parry 1968, 153), I do not discourage any inclination readers
may have to equate Lewis’s ‘pragmatic grounds’ with ‘epistemic justification’.
Granted, “unlike Wilfrid Sellars and many others in the latter half of the 20th
century, Lewis never recognized such [pragmatic] factors as criteria of empir-
ical [epistemic] justification” (Hunter 2016, §4). Nevertheless, Lewis did not
dispute William Parry’s account of Lewis’s pragmatism about choice of logi-
cal system, as being concerned with a “question of truth” about our ordinary
concept of logical implication (Parry 1968, 154) and as including intuitions
about logical and modal concepts among ‘pragmatic grounds’ in Lewis’s sense
(Parry 1968, 126; Lewis 1968, 658; see also Cresswell 1967). (Obviously,
equating Lewis’s ‘pragmatic grounds’ with ‘epistemic justification’ would not
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commit Lewis to reducing either necessity itself or the meaning of ‘necessary’
to epistemic terms.) Second, I do not dispute either Wiredu’s and Lewis’s
shared (but not universally shared) intuitions about logical implication and
about modality, or their shared (but problematic) acceptance of the view that
“Strict implication is identical with deducibility”, that is, with logical implica-
tion (Wiredu 1973, 50; see Lewis and Langford 1959, ch. 8). Finally, I use ‘S
has justification to accept p’ (and analogously for rejection of or suspension of
judgment about p) to abbreviate ‘S has some prima facie, pragmatic grounds
(in Lewis’s sense) to accept p’, where the latter is understood not to imply
either that p is true, or that S is aware of having those grounds, or that S
does not also have some contrary grounds, or that S does accept p.

In section 2, I reconstruct Wiredu’s primary argument and show that it
cannot be accepted as sound. In section 3, I amend Wiredu’s argument and
show that the initial variant argument I construct can be accepted as sound.
In section 4, I further amend Wiredu’s argument and further address rela-
tions among Wiredu’s primary and alternative arguments, the final variant
argument I construct, Makinson’s and Humberstone’s notes, and Cresswell’s
argument.

2 Wiredu’s primary argument

In this section I reconstruct Wiredu’s primary argument and show that
it cannot be accepted as sound, since two essential premises in the argument
have indeterminate contents and Wiredu gives inadequate reasons for those
premises.

Wiredu’s argument turns on the two special modal systems he constructs
as extensions of S1 and S2, which I call W1 and W2, and on his special “strong
rule of substitution” (Wiredu 1979, 691), which I call WR. Here is Wiredu’s
primary argument as I see it.

Wiredu’s primary argument

(P1) Lewis had justification to accept S2. (He was “cautious of any
system stronger than S2”.)

(P2) Lewis had justification to accept WR. (That rule is “very plausible
and intuitively acceptable”.)
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(P3) S4 is deductively contained in W1 and in W2. (S4 “becomes avail-
able”.)

(P4) Justification is relevantly transmitted by deduction. (Implicit.)
(C5) So, Lewis had justification to accept S4. (He “could have been more

adventurous modally [for] he was committed to S4”.)
The circumstantial ad hominem nature of Wiredu’s argument is clear from the
way its premises and conclusion are centered on Lewis’s personal pragmatic
(or, if readers prefer, epistemic) circumstances. The conclusion, for example,
is not ‘the truth about logical necessity includes S4’ but ‘Lewis had justifica-
tion to accept that the truth about logical necessity includes S4’. For charity
to Wiredu, ‘had justification’ here means ‘had some prima facie grounds’, not
‘had overriding or all-in grounds’. Since Wiredu does not discuss Lewis’s ob-
jections to systems stronger than S2, my reading of the argument leaves it
as a further case to be made that the grounds provided by WR to Lewis to
accept S4 would have been sufficiently strong to trump those objections.

Premises P1 and P4 can be granted for present purposes. P1 reflects
Wiredu’s decision to take Lewis’s antecedent commitments as given. P4 en-
sures that the argument’s conclusion in this case validly follows from the first
three premises jointly, but does not imply that justification in general is de-
ductively closed.

Premises P2 and P3, on the other hand, cannot simply be granted. On
the one hand, since S4 is not deductively contained in S2, Wiredu’s conclusion
C5 does not follow from P1 and P4 alone, and P2 and P3 are essential to his
argument. On the other hand, it is not clear what P2 and P3 amount to, or
why they should be thought to be true.

P2’s content is indeterminate since WR is indeterminate. Adopting Lewis’s
notation of = for strict equivalence (mutual strict implication) (Wiredu 1979,
689), Wiredu states his “strong rule of substitution” as follows.

(WR) “If (p = q), then [A(p) = A(q/p)] (Here...A(q/p) is like A(p) except
for containing q in place of p in all or some of the occurrences of p
in A)” (Wiredu 1979, 691).

The difficulty is how to understand this. Wiredu says he intends WR as a
“strengthening of the rule for the substitution of strict equivalents”, that is,
“the rule that is standardly used in the formulation of S1 and of the Lewis
systems, generally” (Wiredu 1979, 692, 691). But he does not say exactly
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what strengthening measure he has in mind from among indefinitely many
conceivable sorts. In another paper he acknowledges the convention of sup-
pressing turnstiles in statements of inference rules (Wiredu 1973, 39). But if
WR were read in light of that convention, then WR would turn out just to be
the standard rule for substitution of proved strict equivalents (Eq′), already
available in S1 and the Lewis systems generally, which Wiredu insists is dis-
tinct from his rule.

(Eq′) If ⊢ (γ = δ), then ⊢ (α = β), provided that α differs from β only
in having γ in some of the places where β has δ. (Hughes and
Cresswell 1996 [hereafter NIML], 199–200; Hughes and Cresswell
1968 [hereafter IML], 246–247; Wiredu 1979, 690).

Wiredu invokes WR in his proofs only once, to license a single step in his
ostensible derivation of “the characteristic thesis of S4” (4.1) in W1 and W2
(Wiredu 1979, 690).

(4.1) □p J □□p

Wiredu evidently intends some sort of weakening or other of the restrictions
on Eq′, sufficient for WR to license that one proof-step. More than that is not
easy to say.

WR’s indeterminateness also infects the reasons Wiredu offers for P2. On
the one hand, Wiredu’s assertion that WR is “very plausible and intuitively
acceptable” is empty if he actually does not have any determinate rule in
mind. On the other hand, though the “very informal” subsidiary argument
Wiredu offers for P2 (Wiredu 1979, 691–692) is too terse and opaque for me to
confidently reconstruct or remark upon, that subsidiary argument does seem
to involve three elements available in S4 but not available to Wiredu on pain
of circularity of justification. First, proved material equivalents seem to be
taken as everywhere substitutable, though that rule (Eq) is not available in
S1, S2, or S3 (IML, 228).

(Eq) If ⊢ (γ ≡ δ), then ⊢ (α ≡ β), provided that α differs from β
only in having γ in some of the places where β has δ. (NIML,
32; IML, 35)
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Second, necessity seems to be taken as everywhere inferable from provabil-
ity, though that rule (N) is not available in S1, S2, or S3 (IML, 235).

(N) If ⊢ α, then ⊢ □α. (NIML, 361; IML, 346)

Third, strict equivalence seems to be taken as substitutably equivalent to nec-
essary material equivalence, though that thesis (2.1) is not available in S1
(Feys 1965, 45, 62, 72).

(2.1) (p = q) = □(p ≡ q)

If the subsidiary argument does involve elements available in S4 but not in S1
or S2, then, regardless of however WR might be rendered determinate, it is
difficult to see how the subsidiary argument can render WR “very plausible
and intuitively acceptable” in a way or to a degree that 4.1 was not already
plausible and acceptable to Lewis.

P3’s content is also infected by WR’s indeterminateness, since W1 and W2
are defined in terms of WR along with specific definitions of strict equivalence
(D=) and possibility (D♢) (Wiredu 1979, 689).

(D=) p = q =df [(p J q) & (q J p)]
(D♢) ♢p =df ∼ [(p = (r & ∼ r)]
(W1) W1 is S1 with D= and extended with WR as an additional primitive

inference rule and D♢ as an additional definition, and with the
extended system closed also under S1’s primitive inference rules.

(W2) W2 is S2 with D= and extended with WR as an additional primitive
inference rule, and with the extended system closed also under S2’s
primitive inference rules.

(W2’s definition omits D♢ because S2 has equivalent thesis 2.2. See Wiredu
1979, 692; Lewis and Langford 1959, 506.)

(2.2) ∼ ♢p = [(p = (r & ∼ r)]

So, W1 and W2 are indeterminate because WR is indeterminate. (D= and
D♢ are also problematic for W1 and W2, since Lewis’s bases for S1 and S2
seem to have both strict equivalence and possibility as “primitive or undefined
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ideas”. See Lewis and Langford 1959, 123; but compare IML, 217. No ‘idea’
can be at once both undefined and defined in any basis for a system. See
Parry 1968, 129, note 51. But Wiredu does not specify non-Lewis bases for
S1 and S2 in W1 and W2.)

Besides the indeterminateness of P3’s content, Wiredu gives faulty proofs
for his claim that extending either S1 to W1 or S2 to W2 makes 4.1 provable
and thus yields at least S4. Wiredu repeatedly but mistakenly says that, ex-
cept for WR and D♢ (or 2.2), his proofs use “only principles available in S1”
(Wiredu 1979, 691; see also 690). The “technical error” reported by Makinson
is that Wiredu twice relies on the rule of conditional proof for strict implica-
tion, which is not a valid rule in S1, S2, or S3. If that rule were valid in any
of those systems, then replacement of ⊃ with J as the main operator in a
thesis would always yield another thesis. But each of those systems has some
“theses in which the main operator is ⊃ but which cease to be theses if the
⊃ is replaced by J” (IML, 228). Another error, not reported by Makinson, is
that Wiredu also relies on a “simple lemma” (L0) that he mistakenly claims
is valid in S1 (hence in S2 and S3) (Wiredu 1979, 690).

(L0) ∼ (p = p) = ⊥

L0 fails, for example, left-to-right in the S3 (hence S2 and S1) model where
W = {w1, w2}, N = {w1}, Q = {w2}, R = {⟨w1, w1⟩, ⟨w1, w2⟩}, and V (p, w1) =
V (p, w2) = 1. (Here = is identity. Kripke models for non-normal systems dis-
tinguish between normal and non-normal worlds. See IML, 274–276; NIML,
201–202. Here N comprises the normal worlds in W , while Q comprises the
non-normal worlds in W .) All these faults in Wiredu’s proofs are indepen-
dent of WR’s indeterminateness and independent of WR’s role in the proofs.
So, Wiredu’s proofs fail on account of these faults regardless of however WR
(hence also W1 and W2) might be rendered determinate and regardless of
whether the single proof-step that Wiredu intends WR to license is a valid
proof-step or not. Wiredu’s faulty proofs thus do not provide any reason to
accept that S4 is deductively contained in W1 and in W2.

In sum, Wiredu’s primary argument cannot be accepted as sound, since
P2 and P3, while essential to the argument, have indeterminate contents and
Wiredu gives inadequate reasons for those premises.
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3 Initial variant argument

In this section I amend Wiredu’s primary argument in a number of specific
ways that jointly change the argument’s view of Lewis’s relevant circumstances
(pragmatic or epistemic, as readers prefer). The resulting initial variant of
Wiredu’s argument can be accepted as sound.

First, I replace the weak non-normal systems S1 and S2 in P1, P2, and P3
with the only slightly stronger normal system T (not mentioned by Wiredu)
that contains both S1 and S2 and like them is contained in S4. This amend-
ment reflects Cresswell’s suggestion that, rather than S1 or S2, “the system
most closely satisfying Lewis’s intuitions would be T” (Cresswell 1967, 204).
The suggestion in other words is that, Lewis had grounds to accept T even
though he did not accept T. Now, T lacks 4.1 but has 2.1, 2.2, Eq, Eq′, N, L0,
conditional proof for strict implication, and 1.1.

(1.1) (p = q) = [(p J q) & (q J p)]

So, T is weaker than S4 but shares crucial features of S2 with Wiredu’s W1 and
W2, and also has non-S2 principles whose intuitive attractiveness for Wiredu
seems likely responsible for his failure to see the formal faults in his own proofs
and arguments.

Second, I replace Wiredu’s indeterminate rule WR in P2 and P3 with a
determinate rule that strengthens Eq′ in a precise way to permit substitu-
tion, not only of proved strict equivalents (whose substitution Eq′ permits),
but also of strict equivalents that are logically implied by (deducible from)
assumptions or premises that are not themselves provable. In connection with
Wiredu’s paper, Humberstone uses a rule he calls (□ ↔ E), but which for
present purposes I rewrite as MSR.

(MSR) If ⊢ (χ ⊃ □(γ ≡ δ)), then ⊢ (χ ⊃ (α ⊃ β)), provided that α dif-
fers from β only in having γ in some of the places where β has δ.
(See Humberstone 2011, 604; compare Cresswell 1965, 192, Axiom
Schema I and Def =. I follow Wiredu in using ⊃ for material impli-
cation, ≡ for material equivalence, and no symbol for propositional
identity, while Humberstone uses → for material implication, ↔
for material equivalence, and ≡ for propositional identity.)
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But, at least in his primary argument, Wiredu frames WR in terms of strict
equivalence (mutual strict implication), not in terms of necessary material
equivalence. In another context and without mentioning Wiredu, Steffen Le-
witzka strengthens Eq′ to a rule he calls SR, which for present purposes I
rewrite as follows.

(SR) If ⊢ (χ ⊃ (γ = δ)), then ⊢ (χ ⊃ (α = β)), provided that α differs
from β only in having γ in some of the places where β has δ. (See
Lewitzka 2016, 1771. Lewitzka uses → for material implication,
↔ for material equivalence, and ≡ for both strict equivalence and
propositional identity.)

But Wiredu follows Lewis in identifying logical implication (deducibility) with
strict implication, not material implication (even if proved). For sake of least
divergence from Wiredu’s text, I prefer to amend his primary argument by
replacing WR, not with MSR or SR, but with the rule I call □SR.

(□SR) If ⊢ (χ J (γ = δ)), then ⊢ (χ J (α = β)), provided that α differs
from β only in having γ in some of the places where β has δ.
(See Martens 2019. Though Lewitzka 2016, 1774, describes an
equivalent axiom schema, which he calls □SP, he does not describe
□SR.)

□SR permits substitution, not only of proved strict equivalents, but, more
generally, of strict equivalents that are formally deducible by Wiredu’s lights.
Replacing WR with □SR in Wiredu’s proof of 4.1 renders the amended proof
valid in T. The amended proof thus establishes that S4 is deductively con-
tained in T+□SR. (S4 has □SR, but T lacks □SR. See Martens 2019.)

Third, I add to P1 the assumption that Lewis had some prima facie grounds
to accept the problematic view that strict equivalence is propositional iden-
tity, or, in other words, that to say ‘p and q are strictly equivalent’ is to say
‘p and q are the same proposition’. (For favorable treatments of the view, see
Stalnaker 1984 and Cresswell 1965; for criticisms, see Prior 1963 and Cress-
well 1988.) I think Lewis’s exact position on this view is not easy to pin
down and there is no space here for full discussion of the interpretive issues.
What is important for present purposes is that Lewis arguably took the view
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seriously and often wrote in way that invites attribution of the view to him.
For example, he repeatedly said of various statements of strict equivalence
that they assert “identity” of propositions (Lewis and Langford 1959, 128,
129). As for Wiredu, though he does not mention propositional identity, I am
tempted to conjecture that his engagement with Lewis has encouraged him
to tacitly and unreflectively see Lewis as identifying strict equivalence with
propositional identity, and to tacitly and unreflectively make that identifica-
tion himself. (See IML, 347, on “the chance of confusion” when = is used for
strict equivalence.)

Fourth, I further amend P2 to reflect the fact that, since □SR is an un-
qualified form or analogue of Leibniz’s Law (‘identicals are indiscernible’) for
propositional identity if strict equivalence is propositional identity, the in-
tuitive plausibility of that Law provides anyone who has grounds to accept
the latter view with grounds also to accept □SR. (Prior 1963, §1, discusses
propositional identity in relation to Leibniz’s Law and substitution of equiva-
lent propositions. Cresswell 1965, 195, constrains propositional identity with
an unqualified form or analogue of Leibniz’s Law that he calls “the identity
schema”. Humberstone 2011, 604, 603, calls (□ ↔ E) “the analogous ‘strict
equivalence’ version of (≡ E)”, where the latter is an unqualified form or
analogue of Leibniz’s Law for propositional identity. Lewitzka 2016, 1771, as-
sociates his strengthened substitution rule SR with “a general ontological law
known as the Indiscernibility of Identicals”.) However, since T lacks □SR de-
spite having Eq, N, and 2.1, the “very informal” subsidiary argument Wiredu
offers to justify WR cannot be rehabilitated to provide additional grounds
for □SR beyond the latter’s intuitive plausibility as an unqualified form or
analogue of Leibniz’s Law.

Fifth, I amend the argument’s form to make it conditional, since P1 as
thus far amended raises interpretive issues for which there is no space to
discuss fully here. For example, though Lewis “does not mention T” (Cresswell
1967, 204, note 18), the fact that he did not accept T but stood fast at
S2 “to the last” (as Wiredu says), suggests that either he thought he did
not have justification to accept T (contrary to Cresswell’s suggestion), or
he thought he had stronger justification not to accept T. Moreover, though
above I cited some places where Lewis seems to have accepted that strict
equivalence is propositional identity, other places can be cited where he seems
to have rejected that view (for example, Lewis and Langford 1959, 285, note
2). To set aside interpretive issues raised by P1 but without amending that
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argument-element’s content, I change its function from asserted premise to
assumption for conditional proof and accordingly change its designation to
A1. I discharge the dependence on A1 of now-intermediate conclusion C5 by
conditional proof to a new final conclusion C6.

Here now is my initial variant of Wiredu’s primary argument.

Initial variant argument

(A1) Lewis had justification to accept T and he had justification to ac-
cept that strict equivalence is propositional identity. (Assumption
for conditional proof.)

(P2) If Lewis had justification to accept that strict equivalence is propo-
sitional identity, then he had justification to accept □SR. (□SR is
an unqualified form or analogue of Leibniz’s Law for propositional
identity if strict equivalence is propositional identity.)

(P3) S4 is deductively contained in T+□SR. (By amendment of
Wiredu’s ‘primary argument’ proof.)

(P4) Justification is relevantly transmitted by deduction. (Granted to
Wiredu.)

(C5) So, Lewis had justification to accept S4. (From A1, P2, and P3,
by P4.)

(C6) So, if Lewis had justification to accept T and he had justification
to accept that strict equivalence is propositional identity, then he
had justification to accept S4. (From A1 and C5, by conditional
proof, but retaining C5’s dependence on P2, P3, and P4.)

The variant argument retains the circumstantial ad hominem nature of
Wiredu’s argument, for the premises and conclusions remain centered on
Lewis’s personal pragmatic (or epistemic) circumstances. Also as before, ‘had
justification’ here still means ‘had some prima facie grounds’, not ‘had over-
riding or all-in grounds’. Since the variant argument still does not address
Lewis’s objections to systems stronger than S2, a further case still remains
to be made that the grounds provided, by □SR and by the view that strict
equivalence is propositional identity, to Lewis to accept S4 would have had
sufficient collective strength to trump those objections. The variant argument
thus leaves open the possibility that Lewis could justifiably have resisted ac-
cepting S4, for example, by justifiably rejecting the view that strict equivalence
is propositional identity or by justifiably accepting Leibniz’s Law for propo-
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sitional identity only in a qualified form. (Systems for propositional identity
with necessity weaker than S4 are investigated, for example, by Ishii 1998;
2000; Martens 2004; and Lewitzka 2015; 2016.)

Since the initial variant argument is valid and its asserted premises (P2,
P3, P4) all can reasonably be accepted as true, the initial variant argument
can reasonably be accepted as sound.

4 Final variant argument

In this section I further amend Wiredu’s argument and further address rela-
tions among Wiredu’s primary and alternative arguments, the final variant
argument I construct, Makinson’s and Humberstone’s notes, and Cresswell’s
argument.

In section 2 above I reconstructed Wiredu’s primary argument, confirmed
Makinson’s report of “a technical error” in it, and showed that it cannot be
accepted as sound. In section 3, reluctant to accept Makinson’s assessment
that its problematic character “vitiates” Wiredu’s primary argument, I noted
Cresswell’s suggestion that Lewis’s explicit expressions might not always ac-
curately reflect his motivating intuitions, applied that suggestion with similar
charity to Wiredu’s expression of his primary argument, and amended the
argument to yield an initial variant argument that can be accepted as sound.
I now show how Wiredu’s primary and alternative arguments can be under-
stood as providing two formally distinct lines of support for a key premise in
a single overall argument for Wiredu’s main conclusion.

The alternative argument is aimed at showing that “the addition of [a
certain] definition of necessity [. . .] to a suitable system of propositional logic
yields at least S4” (Wiredu 1979, 693). On Makinson’s report, the same tech-
nical error that “vitiates” the primary argument also “vitiates” the alternative
argument. Makinson’s reason for saying this clearly is Wiredu’s statement in
justification of a crucial step in the alternative argument that “The proof of
this is essentially the same as the one already given for [4.1 in the primary
argument]” (Wiredu 1979, 693), that is, the one with a technical error. But
Makinson clearly has been hasty, for Wiredu immediately completes his sen-
tence with “except that here the conclusion is a material implication instead
of a strict implication”. Since the conclusion here is by conditional proof for
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material implication, not for strict implication, one instance of the technical
error, at least, has not carried over from the primary argument to the alterna-
tive argument. On the other hand, Makinson also reports “some confusion”
in the alternative argument and it is not immediately clear how that charge
might be avoided. Wiredu does not say anything to suggest that the proof
carried over from the primary argument to the alternative argument is not
still intended to rely on L0 and WR. But he does say that in the alternative
argument = is no longer strict equivalence (mutual strict implication). He
says, “In the [alternative argument] we understand p = q as an abbreviation
for ‘p ≡ q is logically true (i.e., tautological)’ ” (Wiredu 1979, 693). On the one
hand, it is not immediately clear how nested occurrences of =, as in L0, should
now be understood. On the other hand, the shift in WR’s content between
the primary argument and the secondary argument aggravates suspicion that
WR is indeterminate.

Faced with my ambivalent assessment of Makinson’s report on Wiredu’s
alternative argument, I defer to Humberstone. It seems to me that Hum-
berstone’s attention is focused on formal aspects of the alternative argument,
which he takes to be in relevant respects essentially the same as Cresswell’s
1965 argument, and which he thinks can be understood in such a way as to
be sound and free from any insuperable technical error or confusion of the
sort Makinson reports. I take Humberstone’s report to be that, with suitable
amendments in either case, Wiredu’s alternative argument and Cresswell’s
argument both establish that S4 results when the smallest normal system K
(not mentioned by Wiredu) is extended with MSR.

Here now is my final variant of Wiredu’s overall argument, which incorpo-
rates his primary and alternative arguments at P3a and P3b below.

Final variant argument

(A1) Lewis had justification to accept T and he had justification to accept
that strict equivalence is propositional identity. (Assumption for
conditional proof.)

Organon F 26 (3) 2019: 474–490



488 David B. Martens

(P2) If Lewis had justification to accept T and he had justification to
accept that strict equivalence is propositional identity, then he had
justification to accept K and he had justification to accept □SR and
he had justification to accept MSR. (K is deductively contained in
T, and □SR is an unqualified form or analogue of Leibniz’s Law for
propositional identity if strict equivalence is propositional identity,
as is MSR, given that T has 2.1 and Eq′.)

(P3a) S4 is deductively contained in T+□SR. (By amendment of Wiredu’s
‘primary argument’ proof.)

(P3b) S4 is deductively contained in K+MSR. (By amendment of Wiredu’s
‘alternative argument’ proof or that of Cresswell 1965. See Hum-
berstone 2011, 604.)

(P4) Justification is relevantly transmitted by deduction. (Granted to
Wiredu.)

(C5) So, Lewis had justification to accept S4. (By P4, from A1, P2, and
either P3a or P3b.)

(C6) So, if Lewis had justification to accept T and he had justification to
accept that strict equivalence is propositional identity, then he had
justification to accept S4. (From A1 and C5, by conditional proof,
but retaining C5’s dependence on P2, P4, and either P3a or P3b.)

The final variant argument retains the circumstantial ad hominem na-
ture of Wiredu’s argument and ‘had justification’ here still means ‘had some
prima facie grounds’, not ‘had overriding or all-in grounds’. Since the final
variant argument is valid and its asserted premises (P2, P3a, P3b, P4) all can
reasonably be accepted as true, the final variant argument can reasonably be
accepted as sound.

The final variant argument is not exactly what Wiredu says but it is what
he means, I think, in the sense that it accurately expresses the interesting
philosophical intuitions motivating him. The argument also serves as a model
of the Lewisian pragmatic approach to the question of choice of modal logic.
On that approach, the question is never settled by formal methods but only by
explicit recourse to specific pragmatic factors rooted in specific circumstances.
There is some irony in Wiredu’s teasing of Lewis for being “cautious” rather
than “adventurous modally”, when Wiredu himself is so philosophically care-
ful and circumspect in his respectful treatment of Lewis’s pragmatic circum-
stances.
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1 Possible worlds semantics

Semantics is often characterized as a theory of truth conditions. Differences in
meaning between two expressions are never as clearly demonstrated as when
it is possible to point out differences in the truth conditions of the sentences
in which the expressions in question figure and, in spite of the emergence of
other systems and approaches, possible worlds semantics continues to be the
most powerful tool of formal representation in semantics, affording a precise
characterization of the truth conditions of sentences as intensions, i.e., func-
tions from possible worlds to truth values. In general, the representation of
meanings in terms of functions from possible worlds to the appropriate kind
of extensions delivers a compositional semantics that formally captures the
semantic operation of non-syncategorematic expressions in an ordinary lan-
guage.

Although possible worlds semantics is clearly a powerful tool to represent
faithfully the semantic properties of natural language sentences, it has been
often argued that it is too coarse. There are important properties of sentences
that are not discriminated in possible worlds semantics. One interesting case
that raises questions about the ability of possible worlds semantics to make
the appropriate discriminations is the distinction between rigidity and direct
reference, an issue deeply connected to the representation of the behaviour of
two operators: ‘dthat’ and ‘actually’. Some differences between the mode of
operation of ‘dthat’ and ‘actually’ have been pointed out by several authors.1
Our purpose here is to explore formally how different these operators really
are and to what extent the observed differences do have truth conditional con-
sequences representable in possible world semantics.

2 Rigidity and direct reference

Kripke’s notion of rigidity, a notion that underpins one of the most important
revolutions in semantic theory, was presented within the framework of possible
worlds semantics: a rigid designator designates the same object in every possi-
ble world. Hence, ‘the successor of 7’ is rigid because it designates the number
8 in every possible world, whereas ‘the tutor of Alexander the Great’ is not

1Most notably by (Salmon 1991). See also (Soames 2005, 28-30) for a summary.
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rigid, since someone different from Aristotle could have tutored Alexander.2
Kripke’s revolutionary claim was that names are rigid designators, whereas
most definite descriptions, in particular the descriptions that were associated
with names according to classical descriptivists, are not.

It has been typically assumed that a rigid designator designates nothing
in a world in which the actual designatum fails to exist, following (Kripke
1971, 146) and (Kripke 1980, 49): “a designator rigidly designates a certain
object if it designates that object wherever the object exists.” But this has
been the source of some controversy and even Kripke has suggested that some
rigid designators, names in particular, designate even in worlds in which the
designatum fails to exist (see (Kaplan 1989, 570, fn. 8), suggesting that names
are not just rigid but obstinately rigid.3 This is an important issue, and we
will return to it.

A non-rigid designator can be rigidified using the intensional operator ‘ac-
tually’ or ‘actual’. ‘Actually’ operates on formulas: the interpretation of ac-
tually ϕ at any possible world is the interpretation of ϕ at the actual world.
When combined with definite descriptions, the x : actually Px (or, closer to
natural language, the actual P ) designates i in every possible world in which i
exists, if the x : Px designates i in the actual world. For instance, ‘the actual
tutor of Alexander the Great’ designates Aristotle in every world w in which
Aristotle exists, for Aristotle is the individual in w that satisfies being tutor
of Alexander in the actual world.

Direct reference, a different revolutionary idea introduced by Kaplan, ap-
peared on the scene roughly around the time Kripke introduced his distinction
between rigid and non-rigid designators. Unlike rigidity, direct reference relies
on the Russellian picture of structured propositions. A term is directly refer-
ential just in case it contributes its referent to the proposition expressed by
sentences containing it. Propositions are represented by Kaplan as n-tuples
that contain the elements contributed to truth-conditional content by expres-
sions in sentences. Hence, in (Kaplan 1978) we learn that the truth-conditional
content, or proposition expressed by a sentence of the form n is Q, where n
is directly referential, is singular, a proposition of the form < i, Q∗ >, where
i is the referent of n and Q∗ is the property expressed by the predicate Q.
In contrast, the propositional contribution of a non-directly referential term,

2This, of course, takes for granted that teaching Alexander was not an essential property of Aristotle, a
plausible assumption.

3See (LaPorte 2018, section 1.2).
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a definite description such as the P , is general, an attributive complex that
selects at each index of evaluation w the individual relevant for the compu-
tation of truth value at w. Hence, the P is Q expresses a proposition that
can be represented as << ‘the’, P ∗ >, Q∗ >. The difference between singu-
lar propositions, those expressed by sentences containing directly referential
terms, and general propositions can be best captured as a difference between
the constituents of truth conditional content: in the case of a singular propo-
sition, a proposition of the form < i, Q∗ >, it is i itself that determines truth
value at each index of evaluation, whereas in the case of a general proposition,
a proposition of the form << ‘the’, P ∗ >, Q∗ > an attributive complex (con-
strained by a condition of uniqueness) selects for each index the individual
that will determine truth value at that index. Even if the attributive com-
plex < ‘the’, P ∗ > selects i at each index, the truth conditional content, i.e.,
that which determines truth conditions, is different in each case. Or, in other
words, even if the P is a rigid definite description that designates i, the items
determining truth conditions that correspond to the P and to n are quite
different.

Names, indexicals and demonstratives are, according to Kaplan, paradig-
matic instances of directly referential terms. But Kaplan also introduces a
device that operates on definite descriptions and produces directly referential
terms: the ‘dthat’ operator. The idea behind the mode of operation of ‘dthat’
can be captured if one thinks of a definite description as a demonstration, like
a pointing. When a speaker ostensibly points at a person i and utters ‘that
P is Q’, i becomes the truth conditional content of the sentence uttered. In a
similar vein, if the P designates i, dthat(the P ) contributes i, not the complex
< ‘the’, P ∗ > to the truth conditional content. Observe, however, that the
contribution of the actual P to content, to put it in Kaplanian terms, is not
i, but rather an attributive complex corresponding to the actual P . Hence,
the mode of operation of ‘dthat’ is quite different from the mode of opera-
tion of ‘actual’ or ‘actually’. But the important question for our purposes is
whether that difference generates a difference in possible-world-representable
truth conditions.
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3 The semantic operation of ‘actually’ and
‘dthat’

The combination of the actuality operator (A) with definite descriptions
raises an interesting issue as regards the index at which the requirement of
uniqueness should be satisfied. We have two prima facie plausible choices: the
world of evaluation, or the actual world. Let w be a possible world, D(w)
the domain of individuals existing at w, @ the actual world and Int(ϕ)w the
interpretation of an expression ϕ at w.4 The choices can be represented as
follows:

(a) Int(the x : APx)w = i if i ∈ D(w) and i is the unique individual in
D(w) that satisfies Px in @. Int(the x : APx)w is undefined otherwise.

(b) Int(the x : APx)w = i if i ∈ D(w) and i is the unique individual in
D(@) that satisfies Px in @. Int(the x : APx)w is undefined otherwise.

If we put it in Russellian terms, the question is which one of these two
sentences (corresponding to (a) and (b)) best captures the logical form of the
actual P is Q, a difference that hinges on whether the uniqueness condition
falls under the scope of ‘actually’:

(a’) ∃x[APx ∧ ∀y(APy → x = y) ∧ Qx]
(b’) ∃x[A(Px ∧ ∀y(Py → x = y)) ∧ Qx]
In (a’) we are treating actually P as a predicate: there is an i in w such

that i is actually P and anything in w that is actually P is that very i (and i
is Q).

In (b’) the condition of uniquely satisfying P is meant to be satisfied in
the actual world: there is an i in w such that actually i is the only P (and i
is Q).

Both are possible interpretations, and many informal discussions of the
role of rigidified definite descriptions fail to distinguish between the two. This
is because, typically, illustrations of the behavior of ‘actual’ use definite de-
scriptions such as ‘the actual President of the US’ a description that designates
Trump in a world w in which both Trump and Clinton exist and Clinton wins
the 2016 election. Since there is only one President of the US in @ and, by
assumption, also in w, the question as regards the locus of satisfaction of the
uniqueness requirement is not addressed.

4The interpretation funtion Int is defined relative to a structure, an index of evaluation and an assignment,
but we are abbreviating the technical details, which are trivial.
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In our view, there is a clear motivation to go for (a/a’) rather than (b/b’).
Consider the term ‘the only actually existing person’. In a world in which Pat
is the only one of the actual human beings that exists, surrounded by human
possibilia, it should be true that Pat is the only actually existing human being
and hence that ‘the only actually existing person’ designates her relative to
that world.

Yet, Pat will not uniquely satisfy Exists x in @, and so the description
in question will be denotationless in w if (b) is the interpretation of choice.
Or, if (b’) is the chosen representation, any sentence in which the description
figures will be false:

∃x[A(Exists x ∧ ∀y(Exists y → x = y)) ∧ Qx]
for the uniqueness condition under the scope of the operator A will not be
satisfied if there are in the actual world at least two people.5

Hence, we will take (a) and (a’) to be the correct choices for the interpre-
tation of sentences in which descriptions of the form the actual P occur.6

On the other hand, the interpretation of dthat(the P ) is given by the fol-
lowing clause:

Int(dthat(the P ))w = i if i ∈ D(@) and i is the unique individual in D(@)
that satisfies Px in @. Int(dthat(the P ))w is undefined otherwise.

We can try to capture the logical form of sentences containing the operator
‘dthat’ in terms of quantifiers, taking inspiration from Russell. For a sentence
such as dthat(the P ) is Q, the formalizations (a’) or (b’) will not do. When
we evaluate dthat(the P ) is Q in any world w, we need to select an individual
in the domain of the actual world, and the existential quantifier, both in (a’)
and (b’), search for individuals in w. Adding an actuality operator in front of
the existential quantifier in (a’) or (b’) will not do, since then the truth of the
sentence will depend on whether the individual in @ which is uniquely P in
@ is Q in @, and what we really need is an individual which is uniquely P in
@ and Q in w. Hence we need to be able to quantify over the domain of the
actual world even when we are evaluating in a different world w.

The actuality quantifiers (∀@, ∃@), introduced by Allen Hazen (1990), are

5Of course, given that we identify the domain of a world with what exists at that world, that formula is
just equivalent to ∃x[A∀y(x = y) ∧ Qx].

6(Soames 2005, 30, fn. 22), reporting a suggestion by Ali Kazmi, proposes that what we have called (b) is
a “highly intuitive reading [of sentences of the form the actual P is Q] in which the uniqueness condition is
correctly imposed on things that have the property expressed by [P ] in the world-state of the context [namely,
the actual world]”. Soames gives no indication why he regards this reading as highly intuitive but, as we think
our example involving ‘the actually existing person’ shows, that reading is not adequate.
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designed precisely to do that.7 In general,
Int(∀@xϕ(x))w = true iff for all i ∈ D(@), Int(ϕ(x)[i/x])w = true (analo-

gously for ∃@).
With the help of those quantifiers, we can represent the sentence dthat(the P )

is Q as:
(a*) ∃@x[APx ∧ ∀@y(APy → x = y) ∧ Qx]
We could also use a formalization similar to (b’), namely
(b*) ∃@x[A(Px ∧ ∀@y(Py → x = y)) ∧ Qx],
but in this case (a*) and (b*) are equivalent. The difference between (a’)

and (b’) had to do with the locus of satisfaction of the uniqueness condition.
In the case of ‘dthat’ the uniqueness condition has to be satisfied in the ac-
tual world, otherwise dthat(the P ) is denotationless with respect to all indices.
(b*) explicitly captures that condition by including the uniqueness condition
under the scope of @. But (a*) achieves the same result, by restricting the
domain of the universal quantifier to the actual world.

4 A merely conceptual difference between
‘dthat’ and ‘actually’?

Clearly there is an important conceptual difference between ‘dthat’ and the
‘actually’ operator. Resorting again to the picture of structured proposi-
tions, whereas dthat(the P ) is Q expresses a singular proposition of the form
< i, Q∗ >, the actual P is Q expresses a general proposition of the form
<< ‘the’, Actual P∗ >, Q∗ > or, in other words, whereas in the case of
dthat(the P ) is Q, i is the object that is provided as the determiner of truth
value at each index, in the case of the actual P is Q an attributive complex
selects, among the individuals in the domain of any given world w, the unique
individual that happens to be P in the actual world.

To give an example, let us suppose for the moment that Aristotle exists
in all worlds: ‘the actual tutor of Alexander the Great was a philosopher’

7Hazen actuality quantifiers should not be confused with the ordinary quantifiers (usually misnomed ‘actu-
alist quantifiers’, in order to distinguish them from possibilist quantifiers). As Hazen notes, ordinary quantifiers
are really world-restricted, since they always range over the domain of evaluation. Hazen’s aim is different
from ours: he shows that the actuality quantifiers and the operator ‘actually’ both expand the expressive
power of first-order logic, and he also shows that both devices are not equivalent. Moreover, Hazen’s language
does not incorporate definite descriptions.
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expresses a general proposition whose truth value at an index w depends on
whether the unique individual in the domain of w that happens to be actually
tutor of Alexander (namely, Aristotle) is a philosopher in w. ‘Dthat (the tutor
of Alexander the Great) was a philosopher’, on the other hand, expresses a
singular proposition whose truth value at each index depends on whether
Aristotle is a philosopher at that index.

This is all well, and one can see that, conceptually, there is an important
difference here in how the truth conditions of the respective sentences are
captured and in how truth value at an index is determined. But the difference
affects the how not the what. Direct reference proponents may insist on the
importance of the distinction between the two kinds of content, but the fact is
that no truth conditional difference between the two sentences is manifested:
the functions from possible worlds to truth values that represent their truth
conditions are the same. As (Soames 2005, 28n.) puts it, “this difference
between dthat-rigidified descriptions and actually-rigidified descriptions [. . .]
all but washes away in semantic systems in which the content of an expression
in a context is identified with its intension.”

That there is no truth conditional difference between ‘dthat (the tutor of
Alexander the Great) was a philosopher’ and ‘the actual tutor of Alexan-
der the Great was a philosopher’, if domains are not allowed to vary, is
clear. If domains do vary, interesting issues arise if we consider a world
w in which Aristotle fails to exist, for decisions have to be made as re-
gards the assignment of truth value to each of those sentences in w: false,
or indeterminate. In a world in which Aristotle does not exist, he obvi-
ously is not a philosopher, so < Aristotle, Philosopher∗ > can arguably
be said to be false. On the other hand, in that very world Aristotle is not
a member of the antiextension of the predicate ‘philosopher’ and the sen-
tence can be considered to be indeterminate on the grounds that Aristotle
is not in the range of applicability of ‘philosopher’. And the same goes for
<< ‘the’, Actual tutor of Alexander the Great∗ >, Philosopher∗ >, for there
is no individual in w that can be selected by the attributive complex. No
matter which way we decide to go, it is natural to think that the two sen-
tences should suffer the same fate. True, it may be argued that the reasoning
behind the assignment of falsity or indeterminacy is different for the two sen-
tences. Sure enough, and very interesting, but let us recall that possible worlds
semantics is blind to the reasoning and the narratives behind the results: dif-
ferences in semantic mode of operation are intangible if they do not show up
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as differences in truth conditions.
However, if we think now in Russellian terms, the sentence ‘the actual

tutor of Alexander the Great was a philosopher’ is false, because the claim of
existence is false. But as regards ‘dthat (the tutor of Alexander the Great)
was a philosopher’, there is still a choice between false and indeterminate.
So if we endorse the indeterminacy of the latter, there is a truth conditional
difference between ‘dthat’ and ‘actually’.

5 Attributions of existence
Arguably, a truth conditional difference between sentences containing a stan-
dard rigid designator and sentences containing an obstinate rigid designator
shows up in attributions of existence. Recall that an obstinately rigid desig-
nator refers even in worlds in which its designatum fails to exist, whereas a
standard rigid designator (or a persistent designator, in Salmon’s terminology)
does not designate anything in worlds in which its designatum fails to exist.8
‘Dthat’, arguably, operates as an obstinate rigidifier, since the designatum of
dthat(the P ) is the object relevant for the evaluation of sentences in which
dthat(the P ) figures, independently of whether that designatum exists or does
not exist at a given index. The actual P , on the other hand, is a standard
rigid designator. As Scott Soames has noted:

A dthat-rigidified description, dthat[the x : Fx], which designates
an object o in the world-state of the context [the actual world],
designates o in all world-states, even those in which o does not
exist. By contrast, [. . .] the x : actually Fx will fail to designate
anything at a world-state in which o does not exist. (Soames 2005,
28-29)

Focusing now on attributions of existence, if r is a standard rigid designa-
tor, there is a choice as to how sentences of the form r exists are evaluated
in worlds in which r does not denote. The sentences may be considered false
(which appears to be the more natural choice) or they can be interpreted as
indeterminate if we abide by the general principle that sentences with deno-
tationless terms are indeterminate. But if r is obstinately rigid, there is no

8See (Salmon 1991, 34) for the definition of obstinacy and persistence.
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choice; r designates even in worlds in which its designatum fails to exist, and
there is no question that in such worlds r exists is false.9

The difference observed between obstinate rigid designators and standard
rigid designators as regards attributions of existence should be expected to
occur in the presence of ‘dthat’ and of ‘actually: ‘dthat (the tutor of Alexander
the Great)’ and ‘the actual tutor of Alexander the Great’ both designate
Aristotle in the actual world. But in a world w in which Aristotle does not
exist, ‘dthat (the tutor of Alexander the Great) exists’ would be assigned the
truth value False, the same truth value that corresponds to ‘Aristotle exists’,
for those sentences express a complete and evaluable singular proposition <
Aristotle, Exists∗ >. But in such a world, the actualized description fails to
denote, and the sentence ‘the actual tutor of Alexander the Great exists’ can
be evaluated as indeterminate or as false. So, a truth conditional difference
between sentences of the form the actual P is Q and sentences of the form
dthat(the P ) is Q may manifest itself.

Observe, however, that the case for a truth-conditional difference depends
on accepting a specific policy on the treatment of sentences with denotation-
less terms. And it depends also on accepting ‘exists’ as a predicate in the
language, a controversial choice that some may find objectionable. If we re-
ject the predicative status of ‘exists’ and paraphrase its ocurrences in favor of
quantification, the sentence ‘the actual tutor of Alexander the Great exists’
will be as false in w as ‘dthat (the tutor of Alexander the Great) exists’, since
any representation of the logical form of ‘the actual tutor of Alexander the
Great exists’ will start with an existential quantifier ranging over the domain
of w, and no individual in w is actually tutor of Alexander. So, even in the
case of attributions of existence, it is doubtful that the two operators generate
sentences that differ in truth value across possible worlds. In fact, this is not a
phenomenon that arises because of the use of ‘dthat’ and ‘actually’. Compare
‘Aristotle exists’ with ‘the offspring of gametes X and Y exists.’ Let us say
that the description ‘the offspring of gametes X and Y’ refers rigidly to Aristo-
tle. Whereas the name is obstinately rigid, the description is only standardly
rigid, however, the formulas ∃xx = Aristotle and ∃x[Ox ∧ ∀y(Oy → x = y)]
are both false in a world in which Aristotle does not exist. So the phenomenon
just observed generalizes to all obstinate and all standard rigid designators.

Attributions of existence do not conclusively provide a way of discriminat-
9See also (Gómez-Torrente 2006, 250-251), and (Besson 2009, sect. 2.4), for related discussions on attri-

butions of existence.
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ing between obstinately and standardly rigid designators and, in particular,
between ‘dthat’ and ‘actually’. There is, however, a truth conditional differ-
ence generated by the two operators, one that has not been so widely discussed,
and that it is easy to capture without relying on dubious commitments.

6 A truth-conditional difference
Let us consider the following case: in the actual world @ there are many
people that smoke. A description such as ‘the smoker’ is improper and fails
to denote. Suppose now that w is a world in which only one of the actual
smokers, let us call him a, exists. a may be or may not be a smoker in w.
But in w ‘the actual smoker’ designates a, for a is the unique individual in
the domain of w that satisfies the open formula actual smoker(x), in virtue of
satisfying smoker(x) in @. Hence ‘the actual smoker’ fails to denote in @, but
it does acquire a denotation in w, for in w there is after all a unique individual
in the domain that is selected by the attributive complex ‘actual smoker’: in
w, a is an actual smoker.10 Resorting to the picture of propositions used by
Kaplan, we can say that the proposition expressed by ‘the actual smoker is
a man’, the general proposition << ‘the’, Actual Smoker∗ > , Man∗ >, will
be false or indeterminate in @, but will be true in w.

‘Dthat (the smoker)’, on the other hand, does not designate anybody in
@ either, for the description it employs fails, like an ambiguous pointing, to
demonstrate a unique individual. But unlike ‘the actual smoker’, ‘dthat (the
smoker)’ will not acquire a denotation in w. The role of the operator ‘dthat’
applied to a definite description is to provide the individual designated by the
definite description as the element that figures in the computation of truth
value at all indices of evaluation. In the case of ‘dthat (the smoker)’ we are
missing that element, so the computation of truth value at w does not even
get off the ground.

10(Soames 2005, 29), crediting Ali Kazmi, mentions the peculiar behaviour of expressions of the form the
actual P when they are improper in the actual world, since they may acquire different denotations in different
worlds. Soames’ concerns have to do with how this peculiar behaviour affects the status of ‘actually’ as a
rigidifier. Here we are focusing rather on how the truth-conditional behaviour of ‘actually’ can be shown to
be different from the truth-conditional behaviour of ‘dthat’. It is worth noticing that it is in order to avoid the
effects of this peculiar behavior that Soames proposes (Soames 2005, fn. 22) an interpretation of the actual P
is Q that imposes the satisfaction of the condition of uniqueness in the actual world. It is attractive to do so,
since in the conditions envisaged ‘the actual smoker’ would not designate in w because it would not designate
in @. But, as we have argued (see section 3, and in particular fn. 6), we think that the interpretation Soames
suggests is not correct.
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Resorting again to the apparatus of structured propositions we can say
that since ‘dthat (the smoker)’ fails to designate in the actual world, there is
no propositional constituent provided. The proposition expressed by ‘dthat
(the smoker) is a man’ should be a proposition of the form < i, Man∗ >, a
singular proposition with an object in the subject position, an object whose
role is to intervene in the computation of truth value in @ and in other indices.
But there is no such object. We might say that ‘dthat (the smoker) is a man’
does not express a proposition. Or, following a lead by Kaplan,11 we may say
that it expresses a gappy proposition, one that can be evaluated as false or
as indeterminate, in @ and also in w. But surely, the proposition in question
will not be true in w.

Hence, this case suggests that the two operators can have different truth
conditional impact. A more precise representation of the semantics of the two
sentences discussed will further clarify the details. Following the strategy of
section 3, we will first focus on a language that contains a descriptor and the
operators ‘dthat’ and ‘actually’. We will then focus on a language in which
the descriptor and the operator ‘dthat’ are eliminated in favor of ordinary and
Hazen’s actuality quantifiers.

Let us consider a standard first-order language with identity, a descriptor
operator ‘ι’, the modal operator of actuality ‘A’ and the operator ‘dthat’.
Given a variable x, a term t and a formula ϕ, ιxϕ is a term, Aϕ is a formula
and dthat(t) is a term. As usual, we will consider the language interpreted on
a structure consisting of a set of possible worlds W containing the actual world
@, a domain of individuals D(w) for each world w ∈ W and interpretations
for constants and predicates.12 Clauses for interpretation are the usual ones,
with the new operators interpreted as:

Int(ιxϕ)w = i iff i is the unique individual in D(w) such that i satisfies ϕ
in w; otherwise, Int(ιxϕ)w is undefined.

Int(Aϕ)w = Int(ϕ)@

Int(dthat(t))w = Int(t)@

In this language, ‘the actual smoker is a man’ will be formalized as M(ιxASx)
and ‘dthat (the smoker) is a man’ as M(dthat(ιxSx)). To see the difference
in truth conditions, let us consider the following structure < W, D, Int > :

W = {@, w}
11See (Kaplan 1989, 496, fn. 23).
12Nothing depends on the specific modal logic, so we will not represent the relation of accessibility between

worlds. As above, we will also disregard the assignment function.
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D(@) = {0, 1}
D(w) = {0, 2}
Int(S)@ = {0, 1} Int(S)w = {2}
Int(M)@ = {1} Int(M)w = {0}
ιxASx does not denote in @, because in D(@) there are two smokers,

and ιxASx denotes 0 in w, because 0 is the unique actual smoker in D(w).
Therefore, the sentence M(ιxASx) is either false or undetermined (we leave
that unspecified) in @, but it is true in w.

By the semantic clause for ‘dthat’:
Int(dthat(ιxSx))w = Int(ιxSx)@ = i if i is the unique individual in D(@)

that satisfies Sx in @, and it is undefined otherwise.
It is crucial that in this semantic analysis the relativity to the domain of

the world of evaluation disappears, so dthat(ιxSx) denotes neither in @ nor in
w, and the sentence M(dthat(ιxSx)) is either false or undetermined in both
worlds. We see then that there is a difference in truth value status in the
world w.

Let us now consider a language in which ‘dthat’ and the descriptor have
been eliminated. In this case the sentences ‘the actual smoker is a man’ and
‘dthat (the smoker) is a man’ will be translated using our previous formaliza-
tions (a’) and (a*):

∃x[ASx ∧ ∀y(ASy → x = y) ∧ Mx]
∃@x[ASx ∧ ∀@y(ASy → x = y) ∧ Mx]
And following the argument of section 3 it is obvious that the first sentence

is true and the second is false at the index of evaluation w.
In order to highlight the special status of this case, let us now consider a

different structure with the same constituents as before, with the exception of
the interpretation of the predicate S, which is replaced by the following one:

Int(S)@ = {1} Int(S)w = {2}
Now dthat(ιxSx) denotes 1 in @ and the sentence M(dthat(ιxSx)) is true

in @. In w, dthat(ιxSx) still denotes 1, but since 1 is not a member of the
domain D(w), the truth value of M(dthat(ιxSx)) depends on decisions about
the truth value of sentences in which a term denotes an object that fails to
exist in the world in question. As it was the case in the previous structure,
the description ιxASx designates 1 in @, but now it fails to designate in w,
making the sentence M(ιxASx) true in @ and either false or undetermined
in w, depending on general policies about the truth-value status of sentences
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with denotationless terms.13

If our policy on how to treat sentences with denotationless terms differs
from our policy as regards how to treat sentences in which the denotation of a
term fails to exist, then in w we would assign false to one of the sentences and
undetermined to the other. A truth conditional difference is revealed in this
case, but that difference only shows up because of decisions about semantic
phenomena unrelated to the semantic behavior of the operators in question.
By contrast, in the first structure, the truth conditional difference is inde-
pendent of those policies. That, we submit, unmistakably establishes that
possible worlds semantics can distinguish between the two operators.14
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1 Introduction
Modal logic deals with modal concepts, such as necessity, possibility and con-
tingency, and with the logical relationships between propositions that include
such concepts. Modal logicians study various modal principles, arguments and
systems (Blackburn et. al. 2001; 2007, Chellas 1980, Fitting and Mendelsohn
1998, Garson 2006, Hughes and Cresswell 1968; 1996, Kracht 1999, Priest
2008). Lewis and Langford’s Symbolic Logic (1932) marks the beginning of
modern, symbolic, modal logic.

The purpose of this paper is to develop 64 so-called normal modal semantic
tableau systems (half of them correspond to the 32 axiomatic systems that
can be generated by the well-known axioms T , D, B, 4 and 5) and to show
how these systems can be augmented by propositional quantifiers. Therefore,
we will consider 128 different systems in this paper. The tableau rules T − T ,
T − D, T − B, T − 4 and T − 5 and the 32 systems that can be generated
from these rules are well-known. The normal modal tableau system that
includes T − T and T − 4 is deductively equivalent with, that is, includes the
same theorems as, Lewis’s system S4, and the normal modal tableau system
that includes T − T , T − B and T − 4 is deductively equivalent with Lewis’s
system S5.1 All systems in this paper are stronger than Lewis’s systems S1 −
S3. The tableau rule T − F , which is especially interesting for our purposes,
is much less well-known. Hence, all systems that contain this rule deserve
extra attention. The propositional part of all systems in this paper is fairly
standard, but as far as I know there are no modal tableau systems in the
literature that include propositional quantifiers of the kind that is used in our
formal language.2 Hence, all 64 extended systems are new. Furthermore, I will
show how these systems can be used to prove some interesting theorems that
contain propositional quantifiers and I will discuss Lewis’s so-called existence
postulate and some of its consequences. According to this postulate, there is
some pair of propositions X and Y , so related that X implies nothing about
the truth or falsity of Y (Lewis and Langford 1932, 179). This postulate can
be symbolised in the following way: ∃X∃Y (¬□(X → Y ) ∧ ¬□(X → ¬Y )).
Finally, I will prove that all normal modal systems are sound and complete

1 In a strict sense this proposition is not true, since I will not use the exact same language as Lewis.
However, if we were to use the same language, they would be deductively equivalent. I will ignore such
‘trivial’ differences in this paper.

2However, (Bull 1969) and (Kripke 1959) use tableaux that are vaguely similar to the tableaux I use in
this paper.
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and that all systems (including the extended systems) are sound with respect
to their semantics. It is left as an open question whether or not the extended
systems are complete.

Since all extended systems in this paper are new, there are good logical
reasons to be interested in our results. There are also several philosophi-
cally interesting reasons. In systems with propositional quantifiers we can
express many ideas that cannot be expressed in any quantifier-free normal
modal systems. We can, for example, symbolise Lewis’s existence postulate,
from which it follows that there is something that is contingent, that material
implication does not coincide with necessary implication, and that there are
at least four distinct propositions, among other things. In ordinary normal
modal systems, we cannot prove any of these propositions; we cannot even
find plausible formalisations of them. Furthermore, the tableau systems are
often more user-friendly than their axiomatic counterparts, it is often easier
to prove something in a tableau system than in an axiomatic system and it is
often easier to derive a sentence from a set of premises. Consequently, there
are both good philosophical and technical reasons to be interested in the sys-
tems in this paper. (For more information on propositional quantifiers, see,
for example (Lewis and Langford 1932, 178−198), (Kripke 1959), (Bull 1969),
(Fine 1970), (Kaplan 1970), (Gabbay 1971) and (Gallin 1975).)

2 Syntax

First, we introduce a quantifier-free language. Then we extend this language
with propositional quantifiers.

Alphabet. A set of propositional variables P , Q, R, S, T , X, Y , Z, W ,
P1, Q1, R1, S1, T1, X1, Y1, Z1, W1, P2, Q2, R2, S2, T2, X2, Y2, Z2, W2,
. . .; ⊥ (Falsum) and ⊤ (Verum); primitive truth-functional connectives: ¬
(negation), ∧ (conjunction), ∨ (disjunction), → (material implication), and
↔ (material equivalence); modal operators: □ (necessity) and ♢ (possibility),
and (iv) the brackets ), (.

The language L. The language L is the set of formulas generated by the
usual clauses for atomic sentences, Verum and Falsum and propositionally
compound sentences, and the following clause: if A is a formula, then □A
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(it is necessary that A) and ♢A (it is possible that A) are formulas; nothing
else is a formula. A, B, C, . . . stand for arbitrary formulas. Formulas are also
called ‘sentences’.

Definitions. ♦A (it is impossible that A) =df¬♢A (or □¬A); ■A (it is non-
necessary that A) =df¬□A; ▽A (it is contingent that A) =df(♢A∧♢¬A); ▼A
(it is non-contingent that A) =df¬▽A (or (□A ∨ □¬A)); (A ◦ B) (A is con-
sistent with B) =df♢(A ∧ B); (A • B) (A is inconsistent with B) =df¬(A ◦ B)
(¬♢(A ∧ B), ♦(A ∧ B), or □¬(A ∧ B)), (A ⇒ B) (A strictly implies B)
=df□(A → B), (A ⇔ B) (A is strictly equivalent with B) =df((A ⇒ B)∧(B ⇒
A)) (((□(A → B) ∧ □(B → A)), or □(A ↔ B)).

The language LExt. We extend L by adding two propositional quantifiers
∀ (everything/for all) and ∃ (something/for some) in the usual way. So, if A
is any formula and X is any propositional variable, then ∀XA and ∃XA are
formulas. We will call this extended language LExt. Parentheses are usually
dropped when it does not lead to any ambiguity.

The concept of a free variable X in a formula A is defined in the usual
way. A variable X is free in A if and only if (iff) it has a free occurrence in
A. Intuitively, an occurrence of a variable is free in a formula just in case it is
not bound by any quantifier. If A does not contain ∀ or ∃, then every occur-
rence of X in A is free. An occurrence of X is free in ¬B (□B,♢B) iff the
corresponding occurrence of X is free in B, and an occurrence of X in A ∧ B
is free iff the corresponding occurrence of X in A or B is free, etc. Finally, an
occurrence of X is free in ∀Y B (∃Y B) iff the corresponding occurrence of X
is free in B and X is distinct from Y . Any variable occurrences in a formula
that are not free are said to be bound. Every free occurrence of X in B is
bound by ∀ (∃) in ∀XB (∃XB).

Let (A)[B1/X1, . . . , Bn/Xn] be the formula that results by simultaneously
replacing all free occurrences of the variable X1 in A by B1, . . ., and all free
occurrences of the variable Xn in A by Bn. If there are no free occurrences
of X1, . . . , Xn in A, then (A)[B1/X1, . . . , Bn/Xn] = A. We say that B is
substitutable for X in A just in case no variable in B gets bound by a quantifier
when B is substituted for X in A. In other words, B is substitutable for X
in A just in case, for every variable Y , if an occurrence of Y is free in B, then
the corresponding occurrence of Y is free when X is replaced by B in A.
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Lewis uses the identity sign for necessary equivalence since he thinks that
propositions that are necessarily equivalent are identical. We shall also say
that two ‘propositions’ are ‘identical’ iff they are necessarily equivalent and
that they are ‘distinct’ iff they are not necessarily equivalent. So, ∃X∃Y ¬(X ⇔
Y ) says that there are two distinct propositions.

3 Semantics

Model. A model M is a structure ⟨W,R, v⟩, where W is a (non-empty) set of
possible worlds, R is a binary accessibility relation between possible worlds,
and v is a valuation function. Intuitively, ‘Rωω′’ means that the possible
world ω′ is accessible from the possible world ω, or that ω ‘can see’ ω′. Let
X be a propositional variable. Then v(X) is a subset of W. Intuitively, v(X)
is the proposition that X expresses or the set of possible worlds in which X
is true.

Truth conditions. The truth conditions for sentences in L are defined in
the usual way. ‘M, ω ⊩A’ says that A is true in the possible world ω in the
model M. If X is a propositional variable, then M, ω ⊩X iff ω is an element
in v(X). Verum is true in every possible world in every model and Falsum is
false in every possible world in every model. M, ω ⊩¬A iff it is not the case
that M, ω ⊩A. M, ω ⊩A ∧ B iff M, ω ⊩A and M, ω ⊩B, etc. M, ω ⊩□A
iff for every ω′ in W such that Rωω′: M, ω′ ⊩A. M, ω ⊩♢A iff for some ω′

in W: Rωω′ and M, ω′ ⊩A.

Intuitively, ∀XA is true in a possible world ω iff A[B/X] is true in ω for
every sentence B in L, and ∃XA is true in ω iff A[B/X] is true in ω for some
sentence B in L. So, the quantifiers are ‘substitutional’ rather than ‘objectual’.
For example, they do not vary directly over (sets of) possible worlds (the range
is not a (the) set of (all) subsets of (the set of all) possible worlds). To avoid
circularity, we only use formulas from L in our substitutions. To see the poten-
tial problem, let A = ∀XX and assume that our substitutions can include any
formula whatsoever. Then A[A/X] = A, for ∀XX[∀XX/X] = ∀XX. More
precisely, the truth conditions for the new sentences in LExt are defined in
the following way: M, ω ⊩∀XA iff for every sentence B (that is substitutable
for X in A) in L, M, ω ⊩A[B/X]. M, ω ⊩ ∃XA iff there is some sentence B
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(that is substitutable for X in A) in L such that M, ω ⊩A[B/X].3

Validity. A sentence A is valid in a model, M⊩A, iff A is true in every
possible world ω in M. Let M be a class of models. Then A is valid in M,
M⊩A, iff A is valid in every model M in M, that is, iff A is true in every
possible world ω in every model M in M.

Logical consequence. Let A be a sentence, let Γ be a finite set of sen-
tences and let M be a class of models. Then, A is a logical consequence of Γ
in M, M, Γ⊩A, iff for every model M in M and world ω in M, if all elements
of Γ are true in ω in M, then A is true in ω in M. If M, Γ⊩A, we also say
that Γ entails A in M and that the argument from Γ to A is valid in M. An
argument is invalid in M iff it is not valid in M.

3.1 Conditions on models

In this section, I will consider some conditions that might be imposed on
the accessibility relation in a model. In Figure 1, I have listed some of the
most well-known conditions in the literature on modal logic along with some
formulas. If a model M satisfies C − T , then T is valid in M; if a model M
satisfies C − D, then D is valid in M, etc. C − T , C − D, C − B, C − 4 and
C − 5 are mentioned in most introductions to modal logic and they require
no further discussion. Condition C − F is less well-known. It is especially
interesting for our purposes in this paper. We will, for example, see that this
condition is incompatible with Lewis’s existence postulate.

The conditions mentioned in Figure 1 can be used to obtain a categorisa-
tion of the set of all models into various kinds. We shall say that M(C1, . . . , Cn)
is the class of all models that satisfy the conditions C1, . . . , Cn. For example,
M(C − T, C − B, C − 4) is the class of all models that satisfy the conditions
C − T , C − B and C − 4.

3 Some of the systems in this paper are vaguely similar to some systems mentioned by (Bull 1969) and
(Kripke 1959). There are also some similarities between propositional quantification and quantification over
individuals. In Section 4.2, we will see that some Barcan-like formulas can be proved in all systems in this
paper. This means that the propositional quantifiers act more like so-called possibilist quantifiers than like so-
called actualist quantifiers. For more on how to combine modal logic with predicate logic where the quantifiers
vary over objects, see, for example, (Barcan 1946), (Carnap 1946), (Corsi 2002), (Fitting and Mendelsohn
1998), (Garson 1984; 2006), (Hintikka 1961), (Hughes and Cresswell 1968; 1996), (Parks 1976), (Priest 2008),
(Stalnaker and Thomason 1968), (Thomason 1970) and (Thomason and Stalnaker 1968).
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Conditions on R Corresponding formulas
C − K − K □(P → Q) → (□P → □Q)
C − T ∀xRxx T □P → P
C − D ∀x∃yRxy D □P → ♢P
C − B ∀x∀y(Rxy → Ryx) B P → □♢P
C − F ∀x∀y∀z((Rxy ∧ Rxz) → y = z) F ♢P → □P
C − 4 ∀x∀y∀z((Rxy ∧ Ryz) → Rxz) 4 □P → □□P
C − 5 ∀x∀y∀z((Rxy ∧ Rxz) → Ryz) 5 ♢P → □♢P

Figure 1: Conditions on models

By using this classification of model classes we can define a large set of
systems. The set of all sentences in a language that are valid in a class of
models M is the (logical) system of M, S(M). For example, S(M(C − T, C −
B, C −4)) (the system of M(C −T, C −B, C −4)) is the class of sentences (in
our language) that are valid in the class of models that satisfy the conditions
C − T , C − B and C − 4.

There are many interesting relationships between the conditions in Figure
1. Most of them are well-known and require no further comments (see Chellas
1980, ch. 4−5 for more on the relationships between some normal modal
systems). However, there are some interesting connections between C − F
and some other conditions that are worth mentioning.

C − D says that every possible world can see at least one possible world,
and C − F says that every possible world can see at most one possible world.
Hence, C − D ∀x∃yRxy and C − F ∀x∀y∀z((Rxy ∧ Rxz) → y = z) entail
the following condition: ∀x∃y(Rxy ∧ ∀z(Rxz → y = z)), which says that
every possible world can see exactly one possible world. Hence, every world
can see one and exactly one possible world if we assume C − D and C − F .
In other words, C − D and C − F entail that R is a function (that takes one
possible world as input and gives one possible world as output). If a model
satisfies C − F , then ♢P → □P and □P ∨□¬P are valid in this model, and
if a model satisfies C − D, then □P → ♢P is valid in this model. Hence, if
a model satisfies both C − D and C − F , ♢P ↔ □P , ♢¬P ↔ ¬♢P and
■P ↔ ♦P are valid in this model. Then, the distinctions between possibility
and necessity and between non-necessity and impossibility collapse.
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C − T says that R is reflexive, that is, that every possible world can see
itself, and C − F says that every possible world can see at most one possible
world. Hence, C −T ∀xRxx and C −F ∀x∀y∀z((Rxy ∧Rxz) → y = z) entail
the following condition ∀x(Rxx ∧ ∀y(Rxy → y = x)), which says that every
possible world can see itself and nothing but itself. Furthermore, if a model
satisfies ∀x(Rxx ∧ ∀y(Rxy → y = x)), then it also satisfies the following
condition ∀x∀y(Rxy ↔ x = y). In other words, if every world can see itself
and nothing but itself, then a possible world y is accessible from a possible
world x iff x is identical to y. So, if a model satisfies C − T and C − F , then
P ↔ □P , ¬P ↔ ¬♢P and ¬P ↔ ♦P are valid in this model. Hence, the
distinctions between truth and necessary truth and between falsehood and
impossibility collapse. But if C − T holds, then C − D also holds. So, it
is also true that if a model satisfies C − T and C − F , then ♢P ↔ □P ,
♢¬P ↔ ¬♢P and ■P ↔ ♦P are valid in this model. It follows that
the distinctions between what is true, possible and necessary collapse. That
is, the following equivalences hold P ↔ ♢P ↔ □P . Likewise, we have
¬P ↔ ♢¬P ↔ ¬♢P ↔ ■P ↔ ♦P . The distinctions between what is false,
possibly false, impossible and unnecessary also collapse.

4 Proof theory
In this section, I will develop a set of tableau systems. The propositional
part of these systems is similar to systems introduced by (Smullyan 1968) and
(Jeffrey 1967), and the modal part is similar to systems discussed by (Priest
2008). The new interesting thing is the rules for the propositional quantifiers.
For more information about the tableau method and various kinds of tableau
systems, see, for example, (D’Agostino, Gabbay, Hähnle and Posegga 1999)
and (Fitting and Mendelsohn 1998).
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4.1 Tableau rules
4.1.1 Propositional rules

¬¬ ∧ ¬∧
¬¬A, i A ∧ B, i ¬(A ∧ B), i

↓ ↓ ↙↘
A, i A, i ¬A, i ¬B, i

B, i
∨ ¬∨ →

A ∨ B, i ¬(A ∨ B), i A → B, i
↙↘ ↓ ↙↘

A, i B, i ¬A, i ¬A, i B, i
¬B, i

¬ → ↔ ¬ ↔
¬(A → B), i A ↔ B, i ¬(A ↔ B), i

↓ ↙↘ ↙↘
A, i A, i ¬A, i A, i ¬A, i

¬B, i B, i ¬B, i ¬B, i B, i

Figure 2: Propositional rules

4.1.2 Basic modal rules

□ ♢ ¬□ ¬♢
□A, i ♢A, i ¬□A, i ¬♢A, i

irj ↓ ↓ ↓
↓ irj ♢¬A, i □¬A, i

A, j A, j

Figure 3: Basic modal rules
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4.1.3 Quantifier rules

∀ ∃ ¬∀ ¬∃
∀XA, i ∃XA, i ¬∀XA, i ¬∃XA, i

↓ ↓ ↓ ↓
A[B/X], i A[Y/X], i ∃X¬A, i ∀X¬A, i

Figure 4: Propositional quantifier rules

Note that in (∀), B is any (quantifier-free) formula (in L) that is substitutable
for X in A; and in (∃), Y is a propositional variable that is new to the branch.

4.1.4 Accessibility rules

T − D T − T T − B T − F T − 4 T − 5
i i irj irj irj irj
↓ ↓ ↓ irk jrk irk

irj iri jri ↓ ↓ ↓
where j is new j = k irk jrk

Figure 5: Accessibility rules

4.1.5 The CUT-rule and the identity-rules

CUT T − Ii T − Iii
∗ A(i) A(j)

↙ ↘ i = j i = j
A, i ¬A, i ↓ ↓

for every A and i A(j) A(i)

Figure 6: The CUT -rule and the identity-rules

The identity rules should be interpreted in the following way. A(i) is a line in
a tableau that includes ‘i’, and A(j) is like A(i) except that ‘i’ is replaced by
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‘j’. That is, if A(i) is A, i, then A(j) is A, j; if A(i) is kri, then A(j) is krj;
if A(i) is i = k, then A(j) is j = k, etc. ‘∗’ in CUT indicates that CUT is a
rule without any ‘premises’.

4.2 Tableau systems and some basic proof-theoretical
concepts

A tableau system is a set of tableau rules. A normal modal tableau system
is a tableau system that includes all propositional rules and all basic modal
rules. The smallest normal modal tableau system without any accessibility
rules is called K. By adding various additional accessibility rules, we obtain
a large class of stronger systems. By combining the different rules in various
ways, we can construct 64 different normal modal tableau systems (many of
these are deductively equivalent, that is, include the same theorems). To make
some proofs easier, it is often useful to add the CUT -rule. The identity rules
are included in every system that contains T − F . If S is a normal modal
system, then SExt is the normal modal system S extended by the quantifier
rules. There are 64 extended systems of this kind. All in all, we consider 128
different systems in this paper. Many of these are deductively equivalent, that
is, contain the same theorems.

Let T1, . . . , Tn be the (normal modal) tableau system that includes the
tableau rules T1, . . . , Tn. The initial T may be omitted if it is clear that we are
talking about a tableau system. Then, TB4 is the (normal modal) tableau
system that includes the tableau rules T − T , T − B and T − 4, etc.

The concepts of semantic tableau, branch, open and closed branch, etc.
are essentially defined as usual. A (semantic) tableau is a tree-like structure
where the nodes in the tree have the following form: A, i, where A is a formula
in our language and i is in {0, 1, 2, 3, . . .}, or something of the form irj, or
i = j where i, j is in {0, 1, 2, 3, . . .}. A branch in a tableau is closed iff there
is a formula A and a number i, such that both A, i and ¬A, i occur on the
branch or if we have ¬⊤, i or ⊥, i on the branch; it is open just in case it is
not closed. A tableau itself is closed iff every branch in it is closed; it is open
iff it is not closed.

Let S be any system in this paper and let an S-tableau be a tableau gen-
erated in accordance with the rules in S. Furthermore, let A be a sentence
and let Γ be a finite set of sentences. ‘⊢S A’ says that A is a theorem in S and
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‘Γ ⊢S A’ says that A is derivable from Γ in S.

Proof in a system. A proof of A in S is a closed S-tableau that starts
with ¬A, 0.

Theorem in a system. A sentence A is a theorem in S or provable in
S, ⊢S A, iff there is a proof of A in S, that is, iff there is a closed S-tableau
that starts with ¬A, 0.

Derivation in a system. A derivation in the system S of the sentence
A from the set of sentences Γ, is a closed S-tableau whose initial list com-
prises B, 0 for every B in Γ and ¬A, 0. The sentences in Γ are the premises
of the derivation and A is called the conclusion of the derivation. The initial
list of a tableau consists of the first nodes in this tableau whose ‘satisfiability’
we are testing.

Proof-theoretic consequence in a system. A sentence A is a proof-
theoretic consequence of a set of sentences Γ in S or A is derivable from
Γ in S, Γ ⊢S A, iff there is a derivation of A in S from Γ, that is, iff there is
a closed S-tableau whose initial list comprises B, 0 for every B in Γ and ¬A, 0.

4.3 Some theorems

We are now in a position to prove some propositions. I will go through some
theorems that appear in (Lewis and Langford 1932, 178−198) to illustrate how
to use our systems and especially the new quantifier rules. I will also consider
some additional theorems that are not discussed by Lewis and Langford.

First, let us mention some important relationships between some funda-
mental modal concepts. All of the following sentences are theorems in ev-
ery system in this paper (some hold by definition): ♢P ↔ (P ◦ P ), ♦P ↔
¬(P ◦ P ), □P ↔ ¬(¬P ◦ ¬P ), ■P ↔ (¬P ◦ ¬P ), (P • Q) ↔ ¬(P ◦ Q),
(P ⇒ Q) ↔ ¬(P ◦ ¬Q), (P ⇔ Q) ↔ (¬(P ◦ ¬Q) ∧ ¬(Q ◦ ¬P )), ♢P ↔
¬(P • P ),♦P ↔ (P • P ), □P ↔ (¬P • ¬P ), ■P ↔ ¬(¬P • ¬P ), (P ◦ Q) ↔
¬(P • Q), (P ⇒ Q) ↔ (P • ¬Q), (P ⇔ Q) ↔ ((P • ¬Q) ∧ (Q • ¬P )),
♢P ↔ ¬(P ⇒ ¬P ), ♦P ↔ (P ⇒ ¬P ), □P ↔ (¬P ⇒ P ), ■P ↔
¬(¬P ⇒ P ), (P ◦ Q) ↔ ¬(P ⇒ ¬Q), (P • Q) ↔ (P ⇒ ¬Q), (P ⇔
Q) ↔ ((P ⇒ Q) ∧ (Q ⇒ P )), ♢P ↔ ¬□¬P , ♦P ↔ □¬P , ■P ↔ ¬□P ,
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(P ◦ Q) ↔ ¬□¬(P ∧ Q), (P • Q) ↔ □¬(P ∧ Q), (P ⇒ Q) ↔ □(P → Q),
(P ⇔ Q) ↔ □(P ↔ Q), ♦P ↔ ¬♢P , □P ↔ ¬♢¬P , ■P ↔ ♢¬P ,
(P ◦ Q) ↔ ♢(P ∧ Q), (P • Q) ↔ ¬♢(P ∧ Q), (P ⇒ Q) ↔ ¬♢¬(P → Q),
(P ⇔ Q) ↔ ¬♢¬(P ↔ Q), ♢P ↔ ¬♦P , □P ↔ ♦¬P , ■P ↔ ¬♦¬P ,
(P ◦ Q) ↔ ¬♦(P ∧ Q), (P • Q) ↔ ♦(P ∧ Q), (P ⇒ Q) ↔ ♦¬(P → Q),
(P ⇔ Q) ↔ ♦¬(P ↔ Q).

Lewis observes that we can prove that there exists at least one proposition
which is true and that there exists at least one false proposition. We can
also show that not everything is true (¬∀XX) and that not everything is false
(¬∀X¬X). Let us verify the claim that there is something true and that there
is something false.

∃XX. Something is true.
(1) ¬∃XX, 0

(2) ∀X¬X, 0 [1, ¬∃]
(3) ¬(P ∨ ¬P ), 0 [2, ∀ (¬X)[P ∨ ¬P/X]]

(4) ¬P , 0 [3, ¬∨]
(5) ¬¬P , 0 [3, ¬∨]

(6) ∗ [4, 5]

∃X¬X. Something is false.
(1) ¬∃X¬X, 0

(2) ∀X¬¬X, 0 [1, ¬∃]
(3) ¬¬(P ∧ ¬P ), 0 [2, ∀ (¬¬X)[P ∧ ¬P/X]]

(4) P ∧ ¬P , 0 [3, ¬¬]
(5) P , 0 [4, ∧]

(6) ¬P , 0 [4, ∧]
(7) ∗ [5, 6]

Here are some other theorems that do not contain any modal operators.
All of these sentences can be proved in all our systems. ∀X(⊥ → X): Fal-
sum (a contradiction) materially implies anything. ∀X(X → ⊤): Every-
thing materially implies Verum (something that is logically true). ∀X(X →
∀Y (Y → X)): If something is true it is materially implied by anything.
∀X(∀Y (Y → X) → X): If something is materially implied by anything,
it is true. ∀X(X ↔ ∀Y (Y → X)): Something is true iff it is materially
implied by anything. ∀X(¬X → ∀Y (X → Y )): If something is false, it mate-
rially implies everything. ∀X(∀Y (X → Y ) → ¬X): If something materially
implies everything, it is false. ∀X(¬X ↔ ∀Y (X → Y )): Something is false iff
it materially implies everything.
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All of the following sentences are theorems in every system in this paper:
∀X(∃Y ((Y → X) ∧ (¬Y → X)) → X), ∀X(X → ∃Y ((Y → X) ∧ (¬Y →

X))), ∀X(X ↔ ∃Y ((Y → X) ∧ (¬Y → X))) (X is true iff there is a Y such
that both Y and the negation of Y implies X), ∀X(∃Y ((X → Y ) ∧ (X →
¬Y )) → ¬X), ∀X(¬X → ∃Y ((X → Y )∧(X → ¬Y ))), ∀X(¬X ↔ ∃Y ((X →
Y ) ∧ (X → ¬Y ))) (X is false iff there is a Y such that X implies both Y and
the negation of Y ).

Let A be a formula that does not contain any free occurrence of X. Then
all equivalences of the following forms are provable: ∀X(X → A) ↔ (∃XX →
A), ∀X(A → X) ↔ (A → ∀XX), ∃X(A → X) ↔ (A → ∃XX). I will show
the first and leave the rest to the reader.

∀X(X → A) ↔ (∃XX → A)
Left to right ∀X(X → A) → (∃XX → A)

(1) ¬(∀X(X → A) → (∃XX → A)), 0
(2) ∀X(X → A), 0 [1, ¬ →]

(3) ¬(∃XX → A), 0 [1, ¬ →]
(4) ∃XX, 0 [3, ¬ →]
(5) ¬A, 0 [3, ¬ →]

(6) Y , 0 [4, ∃ (X)[Y/X]]
(7) Y → A, 0 [2, ∀ (X → A)[Y/X]]

↙ ↘
(8) ¬Y , 0 [7, →] (9) A, 0 [7, →]

(10) ∗ [6, 8] (11) ∗ [5, 9]

Right to left (∃XX → A) → ∀X(X → A)
(1) ¬((∃XX → A) → ∀X(X → A)), 0

(2) ∃XX → A, 0 [1, ¬ →]
(3) ¬∀X(X → A), 0 [1, ¬ →]
(4) ∃X¬(X → A), 0 [3, ¬∀]

(5) ¬(Y → A), 0 [4, ∃ (¬(X → A))[Y/X]]
(6) Y , 0 [5, ¬ →]

(7) ¬A, 0 [5, ¬ →]
↙ ↘

(8) ¬∃XX, 0 [2, →] (9) A, 0 [2, →]
(10) ∀X¬X, 0 [8, ¬∃] (11) ∗ [7, 9]

(12) ¬Y , 0 [10, ∀ (¬X)[Y/X]]
(13) ∗ [6, 12]

Lewis proves that there are at least two propositions that are distinct (not
necessarily equivalent). We cannot prove this claim in every system in this
paper. However, we can show that it holds in every system that includes T −T
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(or T −D). ∃X∃Y ¬(X ⇔ Y ) is by definition equivalent with ∃X∃Y ¬□(X ↔
Y ). So, to prove the former, we show the latter.

∃X∃Y ¬□(X ↔ Y ). There are at least two propositions that are not necessarily equivalent.
(1) ¬∃X∃Y ¬□(X ↔ Y ), 0

(2) ∀X¬∃Y ¬□(X ↔ Y ), 0 [1, ¬∃]
(3) ¬∃Y ¬□(⊤ ↔ Y ), 0 [2, ∀ (¬∃Y ¬□(X ↔ Y ))[⊤/X]]

(4) ∀Y ¬¬□(⊤ ↔ Y ), 0 [3, ¬∃]
(5) ¬¬□(⊤ ↔ ⊥), 0 [4, ∀ (¬¬□(⊤ ↔ Y ))[⊥/Y ]]

(6) □(⊤ ↔ ⊥), 0 [5, ¬¬]
(7) 0r0 [T ]

(8) ⊤ ↔ ⊥, 0 [6, 7, □]
↙ ↘

(9) ⊤, 0 [8, ↔] (10) ¬⊤, 0 [8, ↔]
(11) ⊥, 0 [8, ↔] (12) ¬⊥, 0 [8, ↔]

(13) ∗ [11] (14) ∗ [10]

This proof depends on T at Step 7. This step is essential (however, in
systems that include D it can be replaced by ‘0r1’ if (8)−(12) are modified in
an obvious way). If a possible world cannot see any world, then everything is
necessary in this world. Hence, all equivalences are necessary in this world.

In every system in this paper, we can show that any two necessary proposi-
tions are necessarily equivalent and hence not distinct, ∀X∀Y ((□X ∧□Y ) →
(X ⇔ Y )), and that any two impossible propositions are necessarily equiva-
lent and hence not distinct, ∀X∀Y ((♦X ∧♦Y ) → (X ⇔ Y )). It is left to the
reader to verify this claim.

We have seen that there is something true and that there is something false.
We can also show that some propositions are necessarily true (∃X □X), that
some propositions are possibly true (∃X ♢X), that some propositions are nec-
essarily false (∃X □¬X), that some propositions cannot be true (∃X¬♢X),
that some propositions are possibly false (∃X ♢¬X), that some propositions
are not necessarily true (∃X¬□X), that some propositions are not necessarily
false (∃X¬□¬X), and that some propositions cannot be false (∃X¬♢¬X).
The proof of ∃X ♢X requires T . It can also be proved in systems with D.
If a possible world cannot see any possible world, then nothing is possible in
this world. Then we cannot conclude that there is something possible in this
world. Similar things can be said about ∃X ♢¬X, ∃X¬□X and ∃X¬□¬X.
All the other propositions hold in every system. I will establish that there are
necessary truths and leave the other proofs to the reader.
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∃X □X. Some propositions are necessarily true. There are necessary truths.
(1) ¬∃X □X, 0

(2) ∀X¬□X, 0 [1, ¬∃]
(3) ¬□(P ↔ P ), 0 [2, ∀ (¬□X)[P ↔ P/X]]

(4) ♢¬(P ↔ P ), 0 [3, ¬□]
(5) 0r1 [4, ♢]

(6) ¬(P ↔ P ), 1 [4, ♢]
↙ ↘

(7) P , 1 [6, ¬ ↔] (8) ¬P , 1 [6, ¬ ↔]
(9) ¬P , 1 [6, ¬ ↔] (10) P , 1 [6, ¬ ↔]

(11) ∗ [7, 9] (12) ∗ [8, 10]

Lewis observes that no proposition is equivalent to its own negation. We
can prove this proposition in every system that includes T (or D). ∀X¬(X ⇔
¬X) is by definition equivalent with ∀X¬□(X ↔ ¬X).

In our systems, we can prove several Barcan-like formulas. All of the follow-
ing sentences are provable in every system in this paper: if everything is nec-
essarily true, then it is necessary that everything is true (∀X □X → □ ∀XX),
if it is necessary that everything is true, then everything is necessarily true
(□ ∀XX → ∀X □X), it is necessary that everything is true iff everything is
necessarily true (□∀XX ↔ ∀X □X), if something is possibly true, then it is
possible that something is true (∃X ♢X → ♢ ∃XX), if it is possible that some-
thing is true, then something is possibly true (♢∃XX → ∃X ♢X), it is possi-
ble that something is true iff something is possibly true (♢ ∃XX ↔ ∃X ♢X),
if something is necessarily true, then it is necessary that something is true
(∃X □X → □ ∃XX), if it is possible that everything is true, then everything
is possibly true (♢ ∀XX → ∀X ♢X). I will prove the first and leave the rest
to the reader.

∀X □X → □∀XX. If everything is necessarily true, then it is necessary that everything is
true.

(1) ¬(∀X □X → □∀XX), 0
(2) ∀X □X, 0 [1, ¬ →]

(3) ¬□ ∀XX, 0 [1, ¬ →]
(4) ♢¬∀XX, 0 [3, ¬□]

(5) 0r1 [4, ♢]
(6) ¬∀XX, 1 [4, ♢]
(7) ∃X¬X, 1 [6, ¬∀]

(8) ¬Y , 1 [7, ∃ (¬X)[Y/X]]
(9) □Y , 0 [2, ∀ (□X)[Y/X]]

(10) Y , 1 [5, 9, □]
(11) ∗ [8, 10]
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Here are some other theorems that can be proved in our systems: ∃Y (P ∧
Y ) → P , P ↔ ∃Y (P ∧ Y ), ¬P → ∀Y ¬(P ∧ Y ), ∃Y ((P → Y ) ∧ (Y →
R)) → (P → R), P → ∀Y (Y → P ), P ↔ ∀Y (Y → P ), ¬P → ∀Y (P → Y ),
¬P ↔ ∀Y (P → Y ), ¬♢P → ∃Y (□(P → Y ) ∧ □(P → ¬Y )), ∃Y (□(P →
Y ) ∧ □(P → ¬Y )) → ¬♢P , ♢P → ∀Y (¬□(P → Y ) ∨ ¬□(P → ¬Y )),
∀Y (¬□(P → Y ) ∨ ¬□(P → ¬Y )) → ♢P , ∃Y (□(Y → P ) ∧ □(¬Y → P )) →
□P , □P → ∃Y (□(Y → P ) ∧ □(¬Y → P )).

Now, let us consider some theorems that include the consistency operator
(see Lewis and Langford, p. 196). ∃X((X ⇒ Q) ∧ (X ◦ R)) → (Q ◦ R): If
there is an X such that X necessarily implies Q and X is consistent with
R, then Q is consistent with R. ∃Y ((P ⇒ Y ) ∧ ¬(Y ◦ R)) → ¬(P ◦ R): If
there is a Y such that P necessarily implies Y and Y is inconsistent with R,
then P is inconsistent with R. ∃X∃Y ((X ⇒ R) ∧ (Y ⇒ S) ∧ (X ◦ Y )) →
(R ◦ S): If there is an X and a Y such that X necessarily implies R and Y
necessarily implies S and X is consistent with Y , then R is consistent with S.
∃Y ((P ⇒ Y ) ∧ (P ⇒ ¬Y )) → ¬(P ◦ P ), ∃X((X ⇒ Q) ∧ (X ◦ X)) → (Q ◦ Q),
∃Y ((P ⇒ Y ) ∧ ¬(Y ◦ Y )) → ¬(P ◦ P ), (P ◦ P ) → ∀Y ¬((P ⇒ Y ) ∧ (P ⇒
¬Y )), (P ◦ P ) → ∀Y ((P ◦ Y ) ∨ (P ◦ ¬Y )), ∃X∃Y ((P ⇒ X) ∧ (Q ⇒ Y ) ∧
¬(X ◦ Y )) → ¬(P ◦ Q): If there is an X and a Y such that P necessarily
implies X and Q necessarily implies Y and X is inconsistent with Y , then
P is inconsistent with Q. By definition the last formula is equivalent with
the following sentence: ∃X∃Y (□(P → X) ∧ □(Q → Y ) ∧ ¬♢(X ∧ Y )) →
¬♢(P ∧Q). So, to prove the former, it is sufficient to establish the latter. Let
us prove this formula (‘MP ’ is an abbreviation of ‘Modus Ponens’, which is a
derived rule in our systems).

∃X∃Y (□(P → X) ∧ □(Q → Y ) ∧ ¬♢(X ∧ Y )) → ¬♢(P ∧ Q).
(1) ¬(∃X∃Y ((□(P → X) ∧ □(Q → Y )) ∧ ¬♢(X ∧ Y )) → ¬♢(P ∧ Q)), 0

(2) ∃X∃Y ((□(P → X) ∧ □(Q → Y )) ∧ ¬♢(X ∧ Y )), 0 [1, ¬ →]
(3) ¬¬♢(P ∧ Q), 0 [1, ¬ →]

(4) ♢(P ∧ Q), 0 [3, ¬¬]
(5) ∃Y ((□(P → Z) ∧ □(Q → Y )) ∧ ¬♢(Z ∧ Y )), 0 [2, ∃]

(6) (□(P → Z) ∧ □(Q → W )) ∧ ¬♢(Z ∧ W ), 0 [5, ∃]
(7) □(P → Z) ∧ □(Q → W ), 0 [6, ∧]

(8) ¬♢(Z ∧ W ), 0 [6, ∧]
(9) □(P → Z), 0 [7, ∧]

(10) □(Q → W ), 0 [7, ∧]
(11) □¬(Z ∧ W ), 0 [8, ¬♢]

(12) 0r1 [4, ♢]
(13) P ∧ Q, 1 [4, ♢]
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(14) P , 1 [13, ∧]
(15) Q, 1 [13, ∧]

(16) P → Z, 1 [9, 12, □]
(17) Q → W , 1 [10, 12, □]

(18) Z, 1 [14, 16, MP ]
(19) W , 1 [15, 17, MP ]

(20) ¬(Z ∧ W ), 1 [11, 12, □]
↙ ↘

(21) ¬Z, 1 [20, ¬∧] (22) ¬W , 1 [20, ¬∧]
(23) ∗ [18, 21] (24) ∗ [19, 22]

Here are some other interesting theorems that can be proved in our sys-
tems.

∀X(□X → ∀Y □(Y → X)): If something is necessarily true it is nec-
essarily implied by anything. ∀X(∀Y □(Y → X) → □X): If something is
necessarily implied by anything, it is necessarily true. ∀X(□X ↔ ∀Y □(Y →
X)): Something is necessarily true iff it is necessarily implied by anything.
∀X(♦X → ∀Y □(X → Y )): If something is impossible, it necessarily implies
everything. ∀X(∀Y □(X → Y ) → ♦X): If something necessarily implies
everything, it is impossible. ∀X(♦X ↔ ∀Y □(X → Y )): Something is im-
possible iff it necessarily implies everything. ∀X(♢X → ¬∀Y □(X → Y )): If
something is possible, it is not the case that it necessarily implies everything.
∀X(¬∀Y □(X → Y ) → ♢X): If it is not the case that something necessar-
ily implies everything, then it is possible. ∀X(♢X ↔ ¬∀Y □(X → Y )):
X is possible iff it is not the case that X necessarily implies everything.
∀X(□X ↔ ∀Y □(¬X → Y )): It is necessary that X iff the negation of
X implies everything. ∀X(♢X ↔ ∃Y ¬□(X → Y )): X is possible iff there is
something X does not necessarily imply. ∀X(♦X ↔ ¬∃Y ¬□(X → Y )): X
is impossible iff there is nothing X does not necessarily imply. ∀X(□X ↔
¬∃Y ¬□(¬X → Y )): X is necessary iff there is nothing that the negation of
X does not imply. The theorems in this paragraph tell us something about
the necessary and sufficient conditions for something to be necessary, possible
and impossible. Our next theorems also consider such conditions.

∀X(∃Y (□(Y → X) ∧ □(¬Y → X)) → □X): If there is a proposition
such that both it and its negation necessarily implies X, then X is neces-
sary. ∀X(□X → ∃Y (□(Y → X) ∧ □(¬Y → X))): If X is necessary, then
there is a proposition such that both it and its negation necessarily implies
X. ∀X(□X ↔ ∃Y (□(Y → X) ∧ □(¬Y → X))): Something X is neces-
sary iff there is a proposition such that both it and its negation necessarily
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implies X. ∀X(∃Y (□(X → Y ) ∧ □(X → ¬Y )) → ♦X): If there is a propo-
sition such that X necessarily implies both it and its negation, then X is
impossible. ∀X(♦X → ∃Y (□(X → Y ) ∧ □(X → ¬Y ))): If X is impossible,
then there is a proposition such that X necessarily implies both it and its
negation. ∀X(♦X ↔ ∃Y (□(X → Y ) ∧ □(X → ¬Y ))): X is impossible iff
there is a proposition such that X necessarily implies both it and its negation.
∀X(¬∃Y (□(X → Y ) ∧ □(X → ¬Y )) → ♢X): If there is no proposition
such that X necessarily implies both it and its negation, then X is possi-
ble. ∀X(♢X → ¬∃Y (□(X → Y ) ∧ □(X → ¬Y ))): If X is possible, then
there is no proposition such that X necessarily implies both it and its nega-
tion. ∀X(♢X ↔ ¬∃Y (□(X → Y ) ∧ □(X → ¬Y ))): X is possible iff there
is no proposition such that X necessarily implies both it and its negation.
∀X(□X ↔ ∀Y (□(Y → X) ∧ □(¬Y → X))), ∀X(♢X ↔ ¬∀Y (□(X →
Y ) ∧ □(X → ¬Y ))), ∀X(♢X ↔ ∀Y (¬□(X → Y ) ∨ ¬□(X → ¬Y ))),
∀X(♢X ↔ ∃Y (¬□(X → Y ) ∨ ¬□(X → ¬Y ))), ∀X(♦X ↔ ∀Y (□(X →
Y ) ∧ □(X → ¬Y ))).

We can prove the following sentences in our systems: ∀X(∃Y (□(X →
Y ) ∧ □(X → ¬Y )) ↔ ∀Y (□(X → Y ) ∧ □(X → ¬Y ))), there is a propo-
sition such that X necessarily implies both it and its negation iff it is true
of every proposition that X necessarily implies both it and its negation.
∀X(∃Y (□(Y → X) ∧ □(¬Y → X)) ↔ ∀Y (□(Y → X) ∧ □(¬Y → X))),
there is a proposition such that both it and its negation implies X iff it is true
of every proposition that both it and its negation implies X.

In systems with T , we can prove the following sentences: □ ∀X □X →
□∀XX and □ ∀X □X → ∀X □X. In systems with 4, we can prove the fol-
lowing sentences: ∀X □X → □ ∀X □X and □ ∀XX → □ ∀X □X. Finally,
in systems with T and 4 all of the following sentences are equivalent: □ ∀XX,
∀X □X and □∀X □X.

Now, let us turn to Lewis’s existence postulate.

4.4 Lewis and Langford’s existence postulate

According to Lewis’s so-called existence postulate, which categorically distin-
guishes strict from material implication, there is some X and Y such that X
does not strictly imply Y and X does not strictly imply that Y is false (Lewis
and Langford 1932, 179). This postulate can be symbolised in the following
way: ∃X∃Y (¬(X ⇒ Y )∧¬(X ⇒ ¬Y )), which by definition is equivalent with
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∃X∃Y (¬□(X → Y ) ∧ ¬□(X → ¬Y )). The existence postulate is equivalent
with the proposition that there is something contingent (∃X ▽X). Let us now
prove this. ∃X ▽X is, by definition, equivalent with the claim that there is
something that is possibly true and possibly false (∃X(♢X ∧ ♢¬X)). So, to
prove that the existence postulate is equivalent with the proposition that there
is something contingent, we prove that the existence postulate is equivalent
with ∃X(♢X ∧♢¬X). I show one direction and leave the other to the reader.

∃X(♢X ∧ ♢¬X) is implied by the existence postulate.
(1) ¬(∃X∃Y (¬□(X → Y ) ∧ ¬□(X → ¬Y )) → ∃X(♢X ∧ ♢¬X)), 0

(2) ∃X∃Y (¬□(X → Y ) ∧ ¬□(X → ¬Y )), 0 [1, ¬ →]
(3) ¬∃X(♢X ∧ ♢¬X), 0 [1, ¬ →]
(4) ∀X¬(♢X ∧ ♢¬X), 0 [3, ¬∃]

(5) ∃Y (¬□(Z → Y ) ∧ ¬□(Z → ¬Y )), 0 [2, ∃ Z/X]
(6) ¬□(Z → W ) ∧ ¬□(Z → ¬W ), 0 [5, ∃ W/Y ]

(7) ¬□(Z → W ), 0 [6, ∧]
(8) ¬□(Z → ¬W ), 0 [6, ∧]

(9) ¬(♢(Z → W ) ∧ ♢¬(Z → W )), 0 [4, ∀ (Z → W )/X]
↙ ↘

(10) ¬♢(Z → W ), 0 [9, ¬∧] (11) ¬♢¬(Z → W ), 0 [9, ¬∧]
(12) □¬(Z → W ), 0 [10, ¬♢] (13) □¬¬(Z → W ), 0 [11, ¬♢]

(14) ♢¬(Z → ¬W ), 0 [8, ¬□] (15) ♢¬(Z → W ), 0 [7, ¬□]
(16) 0r1 [14, ♢] (17) 0r1 [15, ♢]

(18) ¬(Z → ¬W ), 1 [14, ♢] (19) ¬(Z → W ), 1 [15, ♢]
(20) Z, 1 [18, ¬ →] (21) ¬¬(Z → W ), 1 [13, 17, □]

(22) ¬¬W , 1 [18, ¬ →] (23) ∗ [19, 21]
(24) ¬(Z → W ), 1 [12, 16, □]

(25) Z, 1 [24, ¬ →]
(26) ¬W , 1 [24, ¬ →]

(27) ∗ [22, 26]

The existence postulate is also equivalent with the proposition that there
is an X and a Y such that X is both consistent with Y and with the nega-
tion of Y , ∃X∃Y ((X ◦ Y ) ∧ (X ◦ ¬Y )), which by definition is equivalent with
∃X∃Y (♢(X ∧ Y ) ∧ ♢(X ∧ ¬Y )). All these equivalences hold in every system
in this paper.

In all of our systems we can prove the following sentences: if something is
contingent, then not everything is non-contingent (∃X ▽X → ¬∀X ▼X), if
not everything is non-contingent, then something is contingent (¬∀X ▼X →
∃X ▽X), something is contingent iff not everything is non-contingent (∃X ▽X
↔ ¬∀X ▼X), if everything is contingent, then nothing is non-contingent

Organon F 26 (3) 2019: 505–536



Tableaux of Normal Modal Systems with Propositional Quantifiers 525

(∀X ▽X → ¬∃X ▼X), if nothing is non-contingent, then everything is con-
tingent (¬∃X ▼X → ∀X ▽X), everything is contingent iff nothing is non-
contingent (∀X ▽X ↔ ¬∃X ▼X), everything is non-contingent iff nothing is
contingent (∀X ▼X ↔ ¬∃X ▽X), and something is non-contingent iff not
everything is contingent (∃X ▼X ↔ ¬∀X ▽X). In every system that in-
cludes T − F , we can prove that everything is non-contingent, that is, we can
show that ∀X ▼X is valid. ∀X ▼X is equivalent with the negation of the
proposition that there is something contingent. So, T − F is incompatible
with the existence postulate. Let us now show that ∀X ▼X is a theorem in
every T −F -system. ∀X ▼X is equivalent with ∀X¬▽X, which is equivalent
with ∀X¬(♢X ∧♢¬X), which is equivalent with ∀X(□X ∨♦X) (everything
is either necessary or impossible), which is equivalent with ∀X(□X ∨ □¬X)
(everything is necessarily true or necessarily false). So, to prove that ∀X ▼X
is a theorem in every T − F -system, we show that ∀X(□X ∨ □¬X) is a
theorem in every T − F -system.

∀X(□X ∨ □¬X). Everything is non-contingent.
(1) ¬∀X(□X ∨ □¬X), 0

(2) ∃X¬(□X ∨ □¬X), 0 [1, ¬∀]
(3) ¬(□P ∨ □¬P ), 0 [2, ∃]

(4) ¬□P , 0 [3, ¬∨]
(5) ¬□¬P , 0 [3, ¬∨]
(6) ♢¬P , 0 [4, ¬□]

(7) ♢¬¬P , 0 [5, ¬□]
(8) 0r1 [7, ♢]

(9) ¬¬P , 1 [7, ♢]
(10) P , 1 [9, ¬¬]
(11) 0r2 [6, ♢]

(12) ¬P , 2 [6, ♢]
(13) 1 = 2 [8, 11, T − F ]
(14) P , 2 [10, 13, T − Ii]

(15) ∗ [12, 14]

Note that ∃X(♢X ∧ ♢¬X) is true in a possible world ω only if there are
at least two possible worlds that are accessible from ω, one in which X is true
and one in which X is false (for some X). But according to C − F , every
possible world can see at most one possible world.

Here are some other theorems that include the contingency and noncontin-
gency operators and that can be proved in every system: ∀X(▽X ↔ ▽¬X)
(for every X: X is contingent iff the negation of X is contingent), ∀X(▼X ↔
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▼¬X) (for every X: X is non-contingent iff the negation of X is non-
contingent), ∀X(□X ∨▽X ∨♦X) (everything is either necessary, contingent
or impossible), nothing is both necessary and contingent (¬∃X(□X ∧▽X)),
and nothing is both contingent and impossible (¬∃X(▽X ∧ ♦X)).

We cannot show that nothing is both necessary and impossible in every
system in this paper, but ¬∃X(□X ∧♦X) is a theorem in every system that
includes T or D. If there is something that is necessary and impossible, then
everything is necessary and impossible; ∃X(□X ∧♦X) → ∀X(□X ∧♦X) is
a theorem in every system in this paper.

If everything is either necessary, contingent or impossible and not every-
thing is necessary or impossible, then obviously something is contingent. And
if everything is either necessary, contingent or impossible and something is
contingent, then obviously not everything is necessary or impossible.

We have shown that something is necessary, that something is impossi-
ble and that something is contingent, given the existence postulate. Since
nothing is both necessary and contingent, nothing is both contingent and im-
possible and nothing is both necessary and impossible (given T or D), we
can see that there are at least three non-equivalent propositions if we assume
the existence postulate (and our underlying logic includes T or D). How-
ever, given the existence postulate we can prove something stronger, namely
that there are at least four distinct propositions: something that is necessary,
something that is true but not necessary, something that is false but not im-
possible and something that is impossible. Before we prove this, let us first
note that ¬∃X∃Y ∃Z(¬(X ⇔ Y ) ∧ ¬(X ⇔ Z) ∧ ¬(Y ⇔ Z)) is derivable from
∀X(□X ∨¬♢X) in every system (it is left to the reader to verify this claim).
If everything is non-contingent, there are no more than two distinct proposi-
tions. Recall that the distinctions between what is true, necessary and possible
collapse and that the distinctions between what is false, impossible and pos-
sibly false collapse if we assume C − F (and C − T ) and that all necessary
propositions are necessarily equivalent and that all impossible propositions
are necessarily equivalent. Since we also have observed that there are at least
two distinct propositions, we can conclude that there are exactly two distinct
propositions according to some systems.

Assume that the existence postulate holds. Then there are at least four
distinct propositions (at least in every T -system). In other words, we have
that ∃X∃Y ∃Z∃W (¬□(X ↔ Y ) ∧ ¬□(X ↔ Z) ∧ ¬□(X ↔ W ) ∧ ¬□(Y ↔
Z) ∧ ¬□(Y ↔ W ) ∧ ¬□(Z ↔ W )) is derivable from ∃X∃Y (¬□(X →
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Y ) ∧ ¬□(X → ¬Y )). To prove this claim, we will first establish that there
is something that is true but not necessarily true (∃X(X ∧ ¬□X)), or —in
other words— that there is something that is true but possibly false (∃X(X ∧
♢¬X)), and that there is something that is false but not impossible (∃X(¬X∧
¬♦X)), or —in other words— that there is something that is false but pos-
sibly true (∃X(¬X ∧ ♢X)). I will prove the first proposition and leave the
second to the reader. Since we have shown that the existence postulate is
equivalent to the proposition that there is something contingent, we have es-
tablished the desired result if we can show that ∃X(X ∧ ¬□X) is derivable
from ∃X(♢X ∧ ♢¬X). Let us now prove this.

∃X(X ∧ ¬□X) is derivable from ∃X(♢X ∧ ♢¬X).
(1) ∃X(♢X ∧ ♢¬X), 0
(2) ¬∃X(X ∧ ¬□X), 0

(3) ∀X¬(X ∧ ¬□X), 0 [2, ¬∃]
(4) ♢Y ∧ ♢¬Y , 0 [1, ∃]

(5) ♢Y , 0 [4, ∧]
(6) ♢¬Y , 0 [4, ∧]

(7) ¬(Y ∧ ¬□Y ), 0 [3, ∀]
(8) ¬(¬Y ∧ ¬□¬Y ), 0 [3, ∀]
↙ ↘

(9) ¬Y , 0 [7, ¬∧] (10) ¬¬□Y , 0 [7, ¬∧]
↙ ↘ (11) □Y , 0 [10, ¬¬]

(12) ¬¬Y , 0 [8, ¬∧] (13) ¬¬□¬Y , 0 [8, ¬∧] (14) 0r1 [6, ♢]
(15) ∗ [9, 12] (16) □¬Y , 0 [13, ¬¬] (17) ¬Y , 1 [6, ♢]

(18) 0r1 [5, ♢] (19) Y , 1 [11, 14, □]
(20) Y , 1 [5, ♢] (21) ∗ [17, 19]

(22) ¬Y , 1 [16, 18, □]
(23) ∗ [20, 22]

From ∃X(X∧¬□X) we can derive the proposition that there is something
contingently true (true and contingent) in every system that includes D (or
T ), that is, the following formula is derivable in all D- and T -systems: ∃X(X∧
▽X), which is equivalent with ∃X(X ∧ (♢X ∧ ♢¬X)). Likewise, ∃X(¬X ∧
▽X) (which is equivalent with ∃X(¬X ∧ (♢X ∧ ♢¬X)) is derivable from
∃X(¬X ∧ ¬♦X) in all D- and T -systems. According to ∃X(¬X ∧ ▽X),
there is something contingently false (false and contingent). Hence, there is
something that is necessary, there is something that is true but not necessary,
there is something that is false but not impossible, and there is something that
is impossible. Now, we can use these propositions as premises in an argument
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for our conclusion, that is, we can show that ∃X∃Y ∃Z∃W (¬□(X ↔ Y ) ∧
¬□(X ↔ Z)∧¬□(X ↔ W )∧¬□(Y ↔ Z)∧¬□(Y ↔ W )∧¬□(Z ↔ W )) is
derivable from ∃X □X, ∃X(X ∧¬□X), ∃X(¬X ∧♢X) and ∃X □¬X. Since
all these premises are derivable from the existence postulate, it follows that
the proposition that there are at least four distinct propositions is derivable
from the existence postulate. It is left to the reader to verify these claims
(assume that the system includes T ).

Let us conclude this section by mentioning some other things that can be
derived from the existence postulate (in systems with T ). Given the existence
postulate, we can prove that there are at least three distinct propositions which
are possible, that is, the following formula is derivable from the existence
postulate: ∃X∃Y ∃Z((♢X ∧ ♢Y ∧ ♢Z) ∧ ¬□(X ↔ Y ) ∧ ¬□(X ↔ Z) ∧
¬□(Y ↔ Z)). To prove this proposition we can use the following premises:
∃X □X, ∃X(X∧¬□X) and ∃X(¬X∧♢X). Furthermore, given the existence
postulate, we can prove that there are at least three distinct propositions
which are possibly false (not necessarily true), that is, the following formula
is derivable from the existence postulate: ∃X∃Y ∃Z((♢¬X ∧♢¬Y ∧♢¬Z) ∧
¬□(X ↔ Y )∧¬□(X ↔ Z)∧¬□(Y ↔ Z)). To prove this proposition we can
use the following premises: ∃X(X ∧ ¬□X), ∃X(¬X ∧ ♢X) and ∃X □¬X.
This might suggest that there are at least six distinct propositions. However,
we cannot show this.

One of the main reasons behind the existence postulate for Lewis was
that he wanted a postulate that categorically distinguished the system(s) of
strict implication from that of material implication. And given the existence
postulate we can show that strict implication does not collapse into material
implication. In other words, if we accept the existence postulate we can show
that there is some X and some Y such that X materially implies Y even though
X does not necessarily imply Y , that is ∃X∃Y ((X → Y ) ∧ ¬□(X → Y )) is
derivable from ∃X∃Y (¬□(X → Y ) ∧ ¬□(X → ¬Y )). Since we have shown
that the existence postulate is equivalent with ∃X(♢X ∧ ♢¬X), we will use
this formula in our derivation.

∃X∃Y ((X → Y ) ∧ ¬□(X → Y )) is derivable from ∃X(♢X ∧ ♢¬X).
(1) ∃X(♢X ∧ ♢¬X), 0

(2) ¬∃X∃Y ((X → Y ) ∧ ¬□(X → Y )), 0
(3) ♢Z ∧ ♢¬Z, 0 [1, ∃]

(4) ♢Z, 0 [3, ∧]
(5) ♢¬Z, 0 [3, ∧]
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(6) ∀X¬∃Y ((X → Y ) ∧ ¬□(X → Y )), 0 [2, ¬∃]
(7) ¬∃Y ((¬Z → Y ) ∧ ¬□(¬Z → Y )), 0 [6, ∀]

(8) ∀Y ¬((¬Z → Y ) ∧ ¬□(¬Z → Y )), 0 [7, ¬∃]
(9) ¬((¬Z → Z) ∧ ¬□(¬Z → Z)), 0 [8, ∀]

(10) ¬∃Y ((Z → Y ) ∧ ¬□(Z → Y )), 0 [6, ∀]
(11) ∀Y ¬((Z → Y ) ∧ ¬□(Z → Y )), 0 [10, ¬∃]
(12) ¬((Z → ¬Z) ∧ ¬□(Z → ¬Z)), 0 [11, ∀]

↙ ↘
(13) ¬(¬Z → Z), 0 [9, ¬∧] (14) ¬¬□(¬Z → Z), 0 [9, ¬∧]

(15) ¬Z, 0 [13, ¬ →] (16) □(¬Z → Z), 0 [14, ¬¬]
(17) ¬Z, 0 [13, ¬ →] (18) 0r1 [5, ♢]
↙ ↘ (19) ¬Z, 1 [5, ♢]

(20) ¬(Z → ¬Z), 0 (21) ¬¬□(Z → ¬Z), 0 (22) ¬Z → Z, 1 [16, 18, □]
(23) Z, 0 [20, ¬ →] (24) □(Z → ¬Z), 0 (25) Z, 1 [19, 22, MP ]
(26) ¬¬Z, 0 [20, ¬ →] (27) 0r1 [4, ♢] (28) ∗ [19, 25]

(29) ∗ [17, 26] (30) Z, 1 [4, ♢]
(31) Z → ¬Z, 1 [24, 27, □]

(32) ¬Z, 1 [30, 31, MP ]
(33) ∗ [30, 32]

5 Soundness and completeness
All the normal modal tableau systems (without propositional quantifiers) in
this paper are sound and complete with respect to their semantics. In this
section, I will go through the main steps in the soundness and completeness
proofs. Then, I will show how to modify the proofs to establish that the ex-
tended systems are sound. It is an open question whether or not the extended
systems are complete.4

Let S = T − X1, . . . , T − Xn be a normal modal tableau system as defined
above (see Section 4.1). Then we shall say that the class of models, M,
corresponds to S iff M = M(C − X1, . . . , C − Xn).

S is sound with respect to M iff Γ ⊢S A entails M, Γ⊩A. S is complete
with respect to M iff M, Γ⊩A entails Γ ⊢S A.

4 The soundness and completeness proofs for the normal modal tableau systems in this section are similar
to some soundness and completeness proofs that can be found in Priest (2008), chapters 2 and 3.
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5.1 Soundness theorems

Let M = ⟨W,R, v⟩ be a model and let B be a branch in a tableau. Then
B is satisfiable in M iff there is a function f from 0, 1, 2, . . . to W such that
(i) A is true in f(i) in M, for every node A, i on B, (ii) if irj is on B, then
Rf(i)f(j) in M, (iii) if i = j is on B, then f(i) is f(j). If f satisfies these
conditions, we say that f shows that B is satisfiable in M.

(Soundness lemma I). If the branch B is satisfiable in the model M and a
tableau rule is applied to it, then it produces at least one extension, B′, such
that B′ is satisfiable in M.
Proof. The proof is by induction on the height of the derivation. Let f be a
function that shows that the branch B is satisfiable in M.

Connectives. Straightforward.
Modal operators. Suppose that □A, i and irj are on B and that we apply

(□) to B. Then we get an extension, B′, of B that includes A, j. Since B is
satisfiable in M, □A is true in f(i). Furthermore, for any i and j such that
irj is on B, Rf(i)f(j). Hence, A is true in f(j). Suppose that ♢A, i is on
B and that we apply (♢) to B. Then we obtain an extension, B′, of B that
contains nodes of the form irj and A, j. Since B is satisfiable in M, ♢A is
true in f(i). Hence, for some ω in W, Rf(i)ω and A is true in ω. Let f ′ be
the same as f except that f ′(j) = ω. Since f and f ′ differ only at j, f ′ shows
that B is satisfiable in M. Moreover, by definition, Rf ′(i)f ′(j) and A is true
in f ′(j). Hence, f ′ shows that B′ is satisfiable in M.

(¬□) and (¬♢). Similar.
(CUT ) and the identity rules. CUT is obviously sound since every sentence

is either true or false in a possible world. Suppose that A(i) and i = j are on
B and that we apply T −Ii to get A(j). Then f(i) = f(j), for B is satisfiable
in M. If A(i) is B, i, then B is true in f(i). Accordingly, B is true in f(j),
as required. The other cases are similar.

Accessibility rules. I will consider one example to illustrate the method.
(T − F ). Suppose that irj and irk are on B and that we apply (T − F ) to B
to get an extension that contains i = j. Since B is satisfiable in M, Rf(i)f(j)
and Rf(i)f(k). Hence, f(j) = f(k), for R satisfies (C − F ). Other steps:
similar.

(Soundness theorem I). Every normal modal system in this paper is sound
with respect to its semantics.
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Proof. Suppose that B does not follow from Γ in M, where M is the class
of models that corresponds to S. Then every premise in Γ is true and the
conclusion B false in some world ω in some model M in M. Consider an
S-tableau whose initial list consists of A, 0 for every A in Γ and ¬B, 0, where
‘0’ refers to ω. Then the initial list is satisfiable in M. Every time we apply a
rule to this list it produces at least one extension that is satisfiable in M (by
the Soundness Lemma). Accordingly, we can find a whole branch such that
every initial section of this branch is satisfiable in M. If this branch is closed,
then some sentence is both true and false in some possible world in M in M.
Nevertheless, this is impossible. Hence, the tableau is open. Accordingly, B
is not derivable from Γ in S. Consequently, if B is derivable from Γ in S, then
B follows from Γ in M.

5.2 Completeness theorems

In this section, I will show that all the normal modal tableau systems (without
propositional quantifiers) in this paper are complete with respect to their
semantics. However, first I will introduce some important concepts.

Intuitively, a complete branch is a branch where every rule that can be
applied has been applied and a complete tableau is a tableau where every rule
that can be applied has been applied. There can be several different (com-
plete) tableaux for the same sentence or set of sentences, since the tableau
rules may be applied in different orders. To produce a complete tableau, we
can use the following method (which is usually not the simplest one). (1) For
every open branch on the tree, one at a time, start from its root and move
towards its tip. Apply any rule that produces something new to the branch.
For example, (♢) is applied at most once to a node of the form ♢A, i. We do
not apply any rules to a branch that is closed. Some rules may have several
possible applications, for example, □. Then we make all applications at once.
(2) When we have done this for all open branches on the tree, we repeat the
procedure. (T −D) introduces a new possible world. If a rule introduces a new
possible world, it is applied once at the tip of every open branch at the end
of every cycle when we have dealt with all nodes. If there is still something
to do according to this method, the tableau is incomplete; if not, it is complete.

(Induced Model). Let B be an open complete branch of a tableau, let
i, j, k, etc. be numbers on B, and let I be the set of numbers on B. We
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shall say that i ∼ j just in case i = j, or ‘i = j’ or ‘j = i’ occurs on B.
∼ is an equivalence relation and [i] is the equivalence class of i. The model
M = ⟨W,R, v⟩ induced by B is defined as follows. W =

{
ω[i] : i ∈ I

}
, Rω[i]ω[j]

iff irj occurs on B. Let P be a propositional variable. Then, if P, i occurs on
B, then P is true in ω[i], that is, ω[i] is an element in v(P ), and if ¬P, i occurs
on B, then P is false in ω[i], that is, ω[i] is not an element in v(P ).

If our tableau system does not include T − F , ∼ is reduced to identity and
[i] = {i}. Hence, in such systems, we may take W to be {ωi : i occurs on B}
and dispense with the equivalence classes.

(Completeness Lemma). Let B be an open branch in a complete tableau
and let M be a model induced by B. Then, for every formula A:

(i) if A, i is on B, then A is true in ω[i], and
(ii) if ¬A, i is on B, then A is false in ω[i].

Proof. The proof is by induction on the complexity of A.
(i) Atomic formulas. The result is true by definition.
Connectives. I will consider two cases to illustrate the method. (∧) Sup-

pose A is of the form B ∧ C. Then (∧) has been applied to B ∧ C, i and we
have B, i and C, i on B. By the induction hypothesis, B is true in ω[i], and C
is true in ω[i]. It follows that B ∧ C is true in ω[i], as required. (∨) If A is of
the form B ∨ C, then (∨) has been applied to B ∨ C, i. Hence, either B, i or
C, i is on B. By the induction hypothesis, either B is true in ω[i] or C is true
in ω[i]. It follows that B ∨ C is true in ω[i], as required. Other cases. Similar.

Modal operators. (□). Suppose that A is of the form □B and that □B, i
is on B. Then for all j such that irj is on B, B, j is on B. By the induction
hypothesis, for all ω[j] such that Rω[i]ω[j], B is true in ω[j]. Consequently, □B
is true in ω[i], as required. (♢) Suppose that A is of the form ♢B and that
♢B, i is on B. Then for some j, irj and B, j are on B. By the induction
hypothesis, Rω[i]ω[j] and B is true in ω[j]. It follows that ♢B is true in ω[i], as
required.

(ii) Atomic formulas. The result is true by definition.
Connectives. I will consider one example to illustrate the method. (¬∨)

Suppose A is of the form ¬(B∨C). Then (¬∨) has been applied to ¬(B∨C), i
and we have ¬B, i and ¬C, i on B. By the induction hypothesis, B is false
in ω[i], and C is false in ω[i]. It follows that B ∨ C is false in ω[i], as required.
Other cases. Similar.

Modal operators. (¬□) A is of the form ¬□B. Suppose that ¬□B, i is
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on B. Then ♢¬B, i is on B. Hence, for some j, irj and ¬B, j are on B. By
the induction hypothesis, Rω[i]ω[j] and B is false in ω[j]. It follows that □B
is false in ω[i], as required. (¬♢). Similar.

(Completeness Theorem I). Every normal modal system in this paper is
complete with respect to its semantics.

Proof. First we prove that the theorem holds for our weakest system K. Then
we extend the theorem to all normal modal systems that are stronger than K.
Let M be the class of models that corresponds to K, that is, M is the class
of all models.

Suppose that B is not derivable from Γ in K. Then it is not the case that
there is a closed K-tableau whose initial list comprises A, 0 for every A in Γ
and ¬B, 0. Let t be a complete K-tableau whose initial list comprises A, 0 for
every A in Γ and ¬B, 0. Then t is not closed, t is open. Hence, there is at
least one open branch in t. Let B be an open branch in t. The model induced
by B makes all the premises in Γ true and B false in ω[0]. Accordingly, it is
not the case that B follows from Γ in M. Consequently, if B follows from Γ
in M, then B is derivable from Γ in K.

To prove that all normal modal extensions of K are complete with respect
to their semantics, we have to check that the model induced by the open
branch B is of the right kind. To do this we first check that this is true
for every single semantic condition. Then we combine each of the individual
arguments. I will go through one step to illustrate the method.

C − F . Suppose that Rω[i]ω[j] and Rω[i]ω[k]. Then irj and irk occur on
B [by the definition of an induced model]. Since B is complete, (T − F ) has
been applied and j = k occurs on B. Hence, j ∼ k. So, [j] = [k]. It follows
that ω[j] = ω[k], as required [by the definition of an induced model].

5.3 Soundness for systems with propositional
quantifiers

In the extended systems, a tableau branch can contain propositional quanti-
fiers. Hence, we must modify the soundness proof slightly.

(Soundness lemma II). If the branch B is satisfiable in the model M and
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a tableau rule is applied to it, then there is a model M′ and an extension of
B, B′, such that B′ is satisfiable in M′.
Proof. Most cases are trivial modifications of the steps in the proof for sound-
ness lemma I in Section 5.1 (just let M′ be M). The only really interesting
new steps are the steps for the quantifiers.

(∀). Straightforward.
(∃). Suppose that ∃XA, i is on B and that we apply (∃) to B. Then we

get an extension, B′, of B that includes A[Y/X], i, where Y is a propositional
variable new to the branch. Since B is satisfiable in M, ∃XA is true in f(i).
Hence, there is some sentence B in L such that B is substitutable for X in
A and A[B/X] is true in f(i). Let M′ = ⟨W,R, v′⟩ be like M, except that
v′(Y ) = {f(j) : M′, f(j)⊩B}. Then A[Y/X] is true in f(i) in M′.

(Soundness theorem II). All augmented systems are sound with respect to
their semantics.

Proof. Once soundness lemma II is established, the rest of the proof is an easy
modification of the soundness proof for soundness theorem I.

5.4 An example of a countermodel

In this section, I will consider one example of a countermodel that proves that
a certain sentence is not valid and hence that it is not a theorem in a certain
system. This will illustrate how one can use countermodels to prove invalidity
and ‘non-theoremhood’.

The following sentence is a theorem in every (extended) system that in-
cludes T − D (or T − T ): ∀X(□X → ♢X). ∀X(□X → ♢X) says that
everything that is necessary is possible. But this formula is not a theorem in
every system. It is, for example, not a theorem in the smallest extended sys-
tem KExt. To show this, we will first establish that the sentence is not valid in
the class of all models. The following model establishes this: M = ⟨W,R, v⟩,
where W = ω, R is empty, and P is true in ω (or false; it does not matter).
Since no possible world is accessible from ω, it is vacuously true that P is
true in every possible world that is accessible from ω. Hence, □P is true in
ω. ♢P is true in ω only if P is true in some possible world that is accessible
from ω. Since no possible world is accessible from ω, it is not the case that
P is true in some possible world that is accessible from ω. Accordingly, ♢P
is not true in ω. It follows that □P → ♢P is false in ω, for the antecedent
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is true and the consequent is false in ω. ∀X(□X → ♢X) is true in ω only
if (□X → ♢X)[P/X] is true in ω. But (□X → ♢X)[P/X] = (□P → ♢P )
and □P → ♢P is false in ω. Therefore, ∀X(□X → ♢X) is not true in ω.
Consequently, ∀X(□X → ♢X) is not valid in the class of all models. We
have shown that the system K (and KExt) is sound with respect to the class
of all models (Sections 5.1 and 5.3). It follows that ∀X(□X → ♢X) is not a
theorem in KExt.
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